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Abstract— This work proposes a novel solution approach
to address the On-Time Arrival (OTA) problem, considering
macroscopic traffic dynamics. The OTA problem is formulated
as a nonconvex, nonlinear, multi-objective optimization problem
considering two objective criteria. The first criterion aims
at minimizing the travel time of all drivers in the network
to prevent congestion, while the second criterion seeks to
minimize the discrepancy between the desired and actual arrival
time. The proposed formulation is solved efficiently through
an approximated convex solution that leverages the Normal
Boundary Intersection (NBI) method to efficiently generate
a representative sample of the Pareto Front. Additionally, a
solution methodology based on the Nash Bargaining Game
is proposed to select a unique solution across all the Pareto
points. Finally, simulation results demonstrate that the proposed
solution can eliminate congestion while ensuring that most
drivers will arrive at their destination on their desired time.

I. INTRODUCTION
Despite the remarkable technological advancements and

the plethora of traffic management schemes available today,
traffic congestion remains a persistent problem [1] that is
expected to worsen. The main reason for this is that the
majority of these schemes are focused on improving the
needs of individuals rather than the system optimum [2].
However, recent research has demonstrated that an effective
way to address traffic congestion is through the integration of
traffic and demand management strategies [3]. By combining
these approaches, traffic flows can be redistributed in both
time and space domains to optimize the overall system
performance [4].

Traffic demand management strategies primarily aim to
manage the inflow rate of vehicles into the network by
influencing drivers to choose earlier/later trip departure times
or alternative modes of transport [5]. Similarly, several
demand management approaches have been introduced for
the On-Time Arrival (OTA) problem, many of which are
combined with route guidance [6]. The On-Time Arrival
(OTA) problem is concerned with determining optimal de-
parture times and routes for drivers, such that the likelihood
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of their on-time arrival is maximized while minimizing the
risk of arriving too early or too late at their destination [7].
Another OTA approach is to consider macroscopic traffic
dynamics [8]. Macroscopic dynamics are expressed using
the three traffic parameters of speed, flow, and density,
which are used to construct the Macroscopic Fundamental
Diagram (MFD) [9]. Recently, many efforts have focused on
using macroscopic traffic dynamics for demand management
purposes, as in the work presented in [10], which developed a
multi-regional demand management method to shift drivers’
departure times.

This work proposes a multi-objective formulation for the
OTA problem that considers macroscopic traffic dynamics.
The objective is to minimize the difference between the
actual and desired arrival times for each OD pair and at
the same time to avoid the emergence of congestion. To
generate a representative sample of the Pareto front, the
Normal Boundary Intersection (NBI) method is used, which
employs a scalarization technique that leads to generation
of a near-uniform spread of the Pareto points. To ensure
computational efficiency, a convex formulation of the NBI
that approximates all nonlinear nonconvex constraints with
convex ones is proposed. Additionally, this work introduces a
methodology for identifying a single Pareto optimal solution
based on the Nash bargain theory [11]. The Nash bargain so-
lution identifies the Pareto point that maximizes the product
of the net benefit of the two conflicting objective functions,
enabling the identification of the “best” Pareto solution by
solving a single optimization problem over all the points of
the Pareto Front. Overall, the contribution of this work to
the MFD-based OTA problem, are:

• Reformulates the OTA problem to generate a represen-
tative Pareto frontier using the NBI method. To address
the nonconvexity of this problem, this work introduces
an approximate linear solution that provides a lower-
bound solution to the original nonconvex problem.

• Introduces a rolling-horizon algorithmic approach [12]
that projects the lower-bound solution into the feasible
domain of the original non-convex problem. This pro-
jection results in an upper-bound solution.

• Provides an optimization procedure that leverages the
Nash bargaining game theory [11] to pinpoint the “op-
timal” trade-off solution among all the Pareto points.

The rest of this paper is structured as follows. Section
II introduces the demand and traffic flow models, which
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are presented in subsections II-A and II-B, respectively.
Section III describes the Pareto generation procedure for the
OTA problem, while, Section IV, mathematically formulates
the Nash solution that selects the “best” trade-off over all
generated Pareto points. Section V evaluates the proposed
methodologies, and finally Section VI concludes this work
and discusses potential areas for future research.

II. METHODOLOGY

A. Demand Model

Let an urban area partitioned into a set of regions, i.e.,
R = {1, . . . , R} with the sets O and D denote the set of
regions considered as origins, O ⊆ R and destinations D ⊆
R, respectively. This work assumes that vehicular flows that
intent to use the road infrastructure communicate beforehand
the time that they desired to arrive at their destination. Let,
dDod(k) denote the number of vehicles traveling from o ∈ O
to d ∈ D and they desire to arrive at d during time-step k ∈
K, where the set K = {1, 2, . . . ,K} denotes the considered
time horizon.

To model demand dynamics we introduce the variables
d̃od(k) and Dod(k), representing the admitted external de-
mand and remaining external demand, from o ∈ O to d ∈ D,
during time-step k, respectively. Hence, the admitted external
demand denotes the number of vehicles that actually enter o
towards d at time-step k, that is limited by the factors of:

1) The capacity of the region to serve more vehicles.
2) The maximum possible demand that can physically

enter region o ∈ O, defined by the parameter DMAX
o .

3) The traffic management scheme that manages the entry
rate of vehicles.

Furthermore, the remaining external demand denotes the
number of vehicles that are remaining as they are not yet
admitted to enter the network. To keep track of the demand
that is going to be served during the following time-steps,
the dynamics of the remaining external demand at time-step
k are mathematically expressed as:

Dod(k + 1) = Dod(k)− d̃od(k), (1)

and we make the following assumptions:

• The demand is known beforehand (i.e., Dod(0) =∑
k d

D
od(k)),

• At the end of the time horizon all the vehicles will be
served (Dod(K) = 0).

B. Traffic Flow Model

The dynamics within each region r ∈ R are characterized
by the parameters of: the jam density, ρJr , critical density ρCr ,
free-flow speed ufr , capacity, qCr = ρCr u

f
r , total region length

Lr, the average trip length lr and their ratio ζr = Lr/lr
within region r ∈ R. The macroscopic modeling framework
is complemented by the Macroscopic Fundamental Diagram
(MFD) [9] in which the average flow fr(ρr(k)) veh/h
of region r is the product of the region’s density ρr(k)
veh/km and speed ur(ρr(k)) km/h at each time-step k, i.e.,
fr(ρr(k)) = ρr(k)ur(ρr(k)). The average flow of a region

is derived through the asymmetric unimodal triangular MFD
defined as:

fr(ρr(k)) =


qCr
ρCr

ρr(k), if 0 ≤ ρr(k) ≤ ρCr ,

wr(ρ
J
r − ρr(k)), otherwise (2)

where wr = qCr /(ρ
J
r − ρCr ) is the congestion propagation

speed [9]. Using the average flow we can measure the outflow
of a region as follows:

qr(k) = fr(ρr(k))ζr = ur(ρr(k))ρr(k)ζr. (3)

Furthermore, let variable ρord(k) denote the density that
currently is in r ∈ R that originated from o ∈ O destined
to d ∈ D such that:

ρr(k) =
∑
o∈O

∑
d∈D

ρord(k). (4)

Similarly, the variables qord(k) and qorjd(k) denote the
transfer flow originating from o ∈ O towards d ∈ D and
currently in r ∈ R and the corresponding flow in region
r ∈ R originating from o ∈ O destined to d ∈ D that passes
through neighbouring region j ∈ Jr, respectively, such that:

qord(k) =
qr(k)

ρr(k)
ρord(k) = ur(ρr(k))ρord(k)ζr (5)

qord(k) =
∑
j∈Jr

qorjd(k), (6)

qr(k) =
∑
o∈O

∑
d∈D

qord(k). (7)

where Jr is defined as

Jr =

{
J−
r ∪ {r}, if r ∈ D

J−
r , otherwise, (8)

and J−
r ⊆ R is the set of neighboring regions of region

r ∈ R. Interestingly, the amount of flow of vehicles that
finish their trip (exit the network) in region d ∈ D at time-
step k are expressed by the variable qoddd(k) as in that case
r = j = d, d ∈ D.

Moreover, in macroscopic modeling the maximum flow
that can be transferred between neighboring regions r ∈ R
and j ∈ J−

r is limited by the inter-boundary capacity,
Crj(ρj(k)) which is stated as the maximum transfer flow
between two adjacent neighboring regions r and j ∈ R as
follows:

Crj(ρj(k)) =


CMAX

rj , if ρj(k) ≤ αρJj ,

CMAX
rj

1− α
(1− ρj(k)

ρJj
), otherwise, (9)

where CMAX
rj is the maximum inter-boundary capacity and

αρJj is the point where the inter-boundary capacity begins to
decline with 0 < α < 1, [13]. Hence, the actual transfer
flow from r ∈ R to j ∈ Jr, q̃orjd(k) is restricted by
the remaining capacity of the neighboring regions which is
mathematically expressed as follows:

q̃orjd(k) =min

(
qorjd(k),
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Crj(ρj(k))
qorjd(k)∑

o∈O
∑

y∈D qorjy(k)

)
. (10)

Considering all the above, the dynamics of density in region
r ∈ R that originated from o ∈ O towards d ∈ D, can be
expressed as:

ρord(k + 1) =ρord(k) +
1

Lr
d̃od(k)

+
Ts
Lr

∑
j ∈Jr

(
q̃ojrd(k)− q̃orjd(k)

)
, (11)

where, Ts denotes the simulation time-step that governs the
evolution of dynamics.

C. Objective function
The multi-regional OTA problem aims to regulate de-

parture times and determine the multi-regional routes for
all vehicular flows within the road network. This is done
with the goal of minimizing two objectives: (i) the On-Time
Arrival (OTA) (JOTA), which represents the discrepancy
between the time that vehicles desire to arrive and actually
arrive at the destination; and (ii) the Total Traveling Time
spent (TTT) (JTTT ), which represents the total time spent
in the network. To formally state both objective criteria let
variables Sa(k) and Sb(k) represent the cumulative number
of vehicles admitted to the network, and successfully arrive
at their destination, respectively, such that:

Sa(k + 1) = Sa(k) +
∑
o∈O

∑
d∈D

d̃od(k), (12)

Sb(k + 1) = Sb(k) + Ts
∑
o∈O

∑
d∈D

q̃oddd(k), (13)

where Sa(0) = 0 and Sb(0) = 0. Moreover, let variables
Sc
od(k) and Sd

od(k) represent the cumulative number of
vehicles traveling from o ∈ O and desire to arrive at d ∈ D
up-to time-step k, and traveling from o ∈ O and actually
arriving at d ∈ D at time-step k, respectively, such that:

Sc
od(k + 1) = Sc

od(k) + dDod(k), o ∈ O, d ∈ D, (14)

Sd
od(k + 1) = Sd

od(k) + Tsq̃oddd(k), o ∈ O, d ∈ D, (15)

where Sc
od(0) = 0 and Sd

od(0) = 0. Using the above
definitions, the JOTA objective is expressed as the absolute
value of the difference between the cumulative number of
vehicles that desire to arrive at d ∈ D on or before time-
step k, and those that actually arrive on time-step k, over all
time-steps, such that:

JOTA =
∑
k∈K

∑
o∈O

∑
d∈D

|Sc
od(k)− Sd

od(k)|. (16)

While, the JTTT , is expressed as the sum of the difference
between the cumulative number of vehicles admitted to enter
the network, and successfully arrive at their destination, over
all time-steps, such that:

JTTT =
∑
K

(
Sa(k)− Sb(k)

)
. (17)

Finally, the Combined Objective Criterion, (JCOC) is defined
as the sum of the two above criteria, such that:

JCOC = JOTA + JTTT . (18)

D. Problem Formulation

The OTA problem aims to regulate the admission of
vehicles d̃od(k) and transfer flows qorjd(k) of each region
in such a way that the JCOC is minimized,. The formulation
of the OTA problem is mathematically expressed as follows:

(P1) min JCOC =
∑
k∈K

((
Sa(k)− Sb(k)

)
+

∑
o∈O

∑
d∈D

|Sc
od(k)− Sd

od(k)|
)

(19a)

s.t. Demand and Traffic Dynamics: (1) − (15),∑
d∈D

d̃od(k) ≤ DMAX
o , k ∈ K, o ∈ O, d ∈ D, (19b)

d̃od(k) ≤ Dod(k), k ∈ K, o ∈ O, d ∈ D, (19c)

0 ≤ ρr(k) ≤ ρJr , k ∈ K, r ∈ R, (19d)∑
k

dDod(k) = Ts
∑
k∈K

q̃oddd(k),

k ∈ K, o ∈ O, d ∈ D, (19e)
Dod(K) = 0, o ∈ O, d ∈ D, (19f)

Dod(0) =
∑
k∈K

dDod(k), o ∈ O, d ∈ D. (19g)

In problem P1, constraints (2) - (15) define the demand and
traffic dynamics while constraints (19b) and (19c) sustain the
total admitted external demand for all destinations smaller
than, the maximum possible external demand, DMAX

o and
remaining external demand, Dod(k) ∀ k ∈ K. Constraint
(19d) keeps the density of each region within its physical
limits while constraints (19e) and (19f) ensure that all vehicle
requests will be served within the considered time horizon.
Finally, constraint (19g) ensures that the admitted demand
will not surpass the total number of requests. Problem P1 is
a nonconvex nonlinear model since it involves the nonlinear
functions Eqs. (2), (9) and (10) a bilinear term of Eq. (5).

III. GENERATION OF THE PARETO FRONT

In this work, the modified Normal Boundary Intersection
(NBI) method proposed in [14] is used to generate a uni-
formly spread and smooth sample of the Pareto Front.

A. Normal Boundary Intersection Method for the OTA prob-
lem

To simplify notation, let us denote a feasible solution to
problem P1 by the vector x. The functions JOTA(x) and
JTTT (x) represent the corresponding values of the objectives
JOTA and JTTT that can be attained with solution vector
x. Furthermore, let J∗

TTT and J∗
OTA signify the individual

minima of the two objectives of problem P1, achieved at
x∗TTT and x∗OTA, respectively. The individual minimum of
each criterion represents the minimum value that each objec-
tive can achieve, and the vectors x∗OTA and x∗TTT represent
their solution such that, J∗

TTT = JTTT (x∗TTT ) and J∗
OTA =

JOTA(x∗OTA). To encapsulate the cross-evaluation of the
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objectives at these optimal solutions, we introduce the matrix
ΦΦΦ, a 2× 2 matrix defined as:

ΦΦΦ =

(
JOTA(x∗OTA), JTTT (x∗

OTA)
JOTA(x∗TTT ), JTTT (x∗TTT )

)
.

which encapsulates the values of the objective functions
of problem P1 when evaluated at each other’s individual
minimum. Moreover, considering that both objective criteria
are non-negative, the convex hull of the individual minimum
can be defined with the use of the bilinear term ΦΦΦβββ, where
βββ = {(b1, b2)| b1 + b2 = 1} is a given vector parameter.
Then, the NBI method can generate a representative Pareto
Front of P1 by searching for the maximum distance (i.e., t)
along the normal pointing toward the origin by solving the
following optimization problem,

(P2) max t (20a)

s.t. ΦΦΦβββ + tn̂ ≥
∑
k∈K

((
Sa(k)− Sb(k)

)
+

∑
o∈O

∑
d∈D

|Sc
od(k)− Sd

od(k)|
)

(20b)

Demand and Traffic Dynamics: (1) − (15),
Constraints: (19b) − (19g),

where, n̂ = −ΦΦΦv1 and v is a vector with strictly positive
components (e.g., v = (1, 1)T ). Therefore, a set of uniform
distributed Pareto points can be generated by evaluating a
set of different equidistant βββ vectors within the problem P2.

B. Linear relaxed Pareto generation for the OTA Problem

To generate the Pareto Frontier, multiple runs of the
nonlinear nonconvex problem of P2 should be performed.
Problem P2 contains all the nonlinear constraints of P1.Thus,
obtaining a directed solution for P2 requires the use of
nonlinear solver, which cannot offer real-time execution and
optimality guarantees. To solve P2 efficiently using standard
linear solvers, this section proposes a set of linear relaxations
to relax P2 into an approximate convex program.

Lets first consider Eq. (2), which consists of two linear
segments that intersect at the critical density that can be
relaxed into two linear constraints by replacing the equality
sign “=” with inequality “≤” such that:

fr(ρr(k)) ≤
qCr
ρCr

ρr(k), (21)

fr(ρr(k)) ≤ wr(ρ
J
r − ρr(k)). (22)

Note that the combination of the two linear inequalities of
Eq. (21) and (22) generate a superset of Eq. (2). Then,
considering that the shortest travel times can be achieved
only in the case that vehicles are cruising with free-flow
speed, then the bilinear term in Eq. (5) can be relaxed by:

qord(k) ≤ ufrρord(k)ζr. (23)

1The n̂ is the normal direction at the point ΦΦΦβββ pointing towards the
origin.

where it is true that ur(ρr(k)) ≤ ufr for all densities ρr(k).
Furthermore, Eq. (10) returns the minimum between two
functions and can be relaxed as follows:

q̃orjd(k) ≤ qorjd(k) (24)

q̃orjd(k) ≤ Crj(ρj(k))
qorjd(k)∑

y∈D qorjy(k)
. (25)

where Eq. (25) is still nonlinear and it can be further relaxed
into a linear function by taking its summation over all
q̃orjd(k) for d ∈ D such that:∑

o∈O

∑
d∈D

q̃orjd(k) ≤ Crj(ρj(k)). (26)

Similarly with Eq. (2), Eq. (9) consisted of two linear
functions that intersect at the point aρJj that can be relaxed
into two linear constraints by replacing the equality sign “=”
with the inequality “≤” such that:

Crj(ρj(k)) ≤ CMAX
rj , (27)

Crj(ρj(k)) ≤
CMAX

rj

1− α
(1− ρj(k)

ρJj
). (28)

Moreover, taking into account the shape of Eq. (9) the
maximum transfer flow between two regions can be bounded
from above by considering the linear inequality as follows:

Crj(ρj(k)) ≥
−CMAX

rj

ρJj
(ρj(k)− ρJj ). (29)

Moreover considering the relaxation of Eq. (26) can be
combined and handled together with constraints (27)-(29)
such that:∑

o∈O

∑
d∈D

q̃orjd(k) ≤ CMAX
rj , (30)

∑
o∈O

∑
d∈D

q̃orjd(k) ≤
CMAX

rj

1− α
(1− ρj(k)

ρJj
), (31)

∑
o∈O

∑
d∈D

q̃orjd(k) ≥
−CMAX

rj

ρJj
(ρj(k)− ρJj ), (32)

for all k ∈ K, o ∈ O, r ∈ R, d ∈ D, j ∈ Jr. In this
way the Eqs. (10) and (9) can be approximated together
by the convex envelop consisted of the linear segments of
constraints (30)- (32). Finally, the constraint as expressed
in (20b), which incorporates an absolute value, can be
reformulated into an equivalent linear representation. This is
achieved by introducing the slack variable ψod(k), thereby
allowing the replacement of (20b) with the following linear
constraints:

ΦΦΦβββ + tn̂−
∑
k∈K

(
Sa(k)− Sb(k)

)
≥

∑
k∈K

(∑
o∈O

∑
d∈D

ψod(k)

)
, (33)

ψod(k) ≥
(
Sc
od(k)− Sd

od(k)
)
, k ∈ K, o ∈ O, d ∈ D, (34)

ψod(k) ≥ −
(
Sc
od(k)− Sd

od(k)
)
, k ∈ K, o ∈ O, d ∈ D.

(35)
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Considering all the above relaxations, the problem P2

can be approximated by a linear program by replacing
constraints (2), (5), (9), (10) and (20b) with (21)-(24), (30)-
(32) and (33)-(35). Hence, the mathematical formulation of
the relaxed version of problem P2 is given in the problem
P3 as follows:

(P3) max t (36)
s.t. Demand and Traffic Dynamics: (1), (4), (6) − (8),

(11) − (15), (21) − (24), and (30) − (32),
Constraints: (19b) − (19g) and (33) − (35).

The formulation of P3 is a linear program that offers a
relaxed solution of the original nonlinear nonconvex problem
P2. The resulting relaxation is a lower-bound of the optimal
objective value of problem P2, that may lead to infeasible
solutions as may not satisfy some of the original constraints.
This is due to the fact that there is a discrepancy between the
actual nonlinear problem of P2 and the approximate solution
of P3. This discrepancy can lead to poor performance and
solutions far away from optimality.
C. Feasible upper-bound solution of the OTA Problem

To achieve a feasible upper-bound solution, this work
introduces a rolling horizon algorithmic approach. The al-
gorithm incrementally solves the relaxed version of problem
P3 over fixed M time intervals considering in three main
steps.

In the first step, the relaxed version of problem P3 is
solved for the time horizon including the time-steps k =(
M(η + 1), . . . , |K|

)
, with η serving as the current interval

index. The resulting solution is then projected onto the
feasible domain of the original nonconvex problem, P2. This
projection yields feasible control decisions, by endorsing the
utilization of split ratios rather than the transfer flows for
the route guidance control decisions. The rationale for this
preference lies in the inherent nature of split ratios as relative
measures. Specifically, the split ratios γorjd(k) ∈ [0, 1] are
defined as:

γorjd(k) =


q̃orjd(k)∑

j∈Jr
q̃orjd(k)

, if
∑
j∈Jr

q̃orjd(k) ̸= 0

1/|Jr|, if
∑
j∈Jr

q̃orjd(k) = 0, (37)

which proportionally allocate flows to adjacent regions.
The second step involves evaluating the control decisions

(i.e., split ratios and admitted demand) determined in the first
step, using a macroscopic simulation model that reflects the
nonlinear MFD dynamics, as described by Eqs. (1)-(15). This
step aims to enhance the initial solution’s quality, thereby de-
riving feasible upper-bound control decisions, namely d̃∗od(k)
and γ∗orjd(k), for k =

(
M(η + 1), . . . ,M(η + 2)

)
.

The third and final step utilizes the simulated states from
the second step to update the new initial conditions for
all optimization-related variables for subsequent intervals.
Thus, in each interval,the algorithm leverages the most recent
simulated states to update the initial conditions for the
variables ρr(k), ρord(k), Sa(k), Sb(k), Sc

od(k) and Sd
od(k),

(a) (b)

Fig. 1. The Pareto front generated by applying the NBI method for : (a)
the normal and (b) the congested demand scenarios.

for k = M(η + 2). This rolling horizon update is crucial
to ensure that the initial values of the objective function
are accurately propagated to subsequent intervals. Therefore,
based on the solutions obtained from Step 2 during each
iteration, we proceed to update the matrix ΦΦΦ. This procedure
is repeated throughout the entire planning horizon, advancing
in increments of M time steps, and pushing the boundary of
the solution space towards feasibility.

IV. NASH PARETO OPTIMAL SOLUTION
A set of uniform distributed Pareto points can be generated

by evaluating a set of different equidistant βββ vectors using
the upper-bound feasible solution of Algorithm ??. The Nash
bargaining solution [11] constitutes one of the solutions
that offer an appropriate trade-off among the two objective
criteria JTTT and JOTA. Each solution over the Pareto
Front is defined by the coordinates

(
JPFi

OTA, J
PFi

TTT

)
, where,

the superscript PFi denotes the ith generated point across
the Pareto. Accordingly, the Nash bargaining solution is
the Pareto point i.e.,

(
JPF∗

OTA, J
PF∗

TTT

)
, that maximizes the

total benefit of both objective criteria (JTTT and JOTA).
Hence, the Nash bargaining solution is the unique point that
maximizes the product of individual net benefit gains from
the threat point of the non-cooperative Nash equilibrium.
The threat point is defined the worst case solution for
each objective function that happens only in case that one
objective is optimized without considering the other. Hence,
the threat point of Total Traveling Time objective is attain at
x∗OTA where the individual minimum of the On-Time Arrival
objective is achieve i.e., JTTT (x∗

OTA) and in the same
manner the threat point of On-Time Arrival objective attain
at x∗TTT , i.e., JOTA(x∗

TTT ). Considering all the above, the
Nash bargain solution selects the unique solution to the
following maximization problem:
(P4) max

(
JOTA(x∗TTT )− JPF

OTA

)(
JTTT (x∗

OTA)− JPF
TTT

)
(38)

s.t. JPF
OTA ≤ JOTA(x∗

TTT )

JPF
TTT ≤ JTTT (x∗OTA).

The problem P4 returns the solutions that maximizes the
product of

(
JOTA(x∗TTT )− JPF

OTA

)(
JTTT (x∗

OTA)− JPF
TTT

)
attain at the single pareto point x∗

COC . The selected solution
is the “best” trade-off solution as it minimizes the difference
between the actual and the desired arrival time while also
reducing the total time spent by all vehicles in the network.

V. SIMULATION RESULTS
To evaluate the proposed framework, we considered an

urban network consisted of 16 regions in which four regions
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(a) (b)

(c)
Fig. 2. The cumulative number of vehicles that are admitted to enter the
network (Admitted vehicles), complete their trips (Exit vehicles), desire to
arrive at their destination (Demand) as a function of time, for the congested
demand scenario with: (a) J∗

COC ; (b) J∗
TTT ; and (c) J∗

OTA.

are considered as origins and four regions are considered as
destinations. The traffic dynamics of each region are assumed
to follow a triangular MFD model, with parameters: ρCr = 30
veh/km, ρJr = 130 veh/km, Lr = 1 km, ufr = 60 km/h,
qCr = 1800 veh/h, CMAX

rj = 1800 veh/h and α = 0.25.
The simulation time-step is selected equal to Ts = 30 s
while the whole time horizon is set to T = 140 min. Two
demand scenarios are considered for evaluation purposes: (i)
normal scenario with average demand around 2500 veh/h
and (ii) congested with average demand around 4000 veh/h.
The normal demand scenario refers to cases where vehicles
can be served by the network without causing congestion,
while the congested scenario refers to cases where congestion
would occur without implementing any control policy.

Figures 1 (a) and (b) depict the Pareto Front generated by
solving the formulation of P3 for the normal and congested
demand scenarios, respectively. Each scatter in the figures
represents a Pareto solution to the approximated formulation
of P3 obtained by evaluating varying values of βββ ranging be-
tween [0, 1]. In particular, both figures depict the two special
cases where only one out of the two objectives is optimized
by the left- and right-pointing triangles. The left-pointing
triangle indicates the case where J∗

OTA is minimized, while
the right-pointing triangle indicates the case where J∗

TTT is
minimized. Furthermore, the green rhombus represents the
Nash Pareto solution, i.e., J∗

COC obtained by solving the
P4 problem, which offers the best trade-off among the two
objective criteria. From the figures, we can observe that knee
solutions are possible alternative solutions that can offer a
good trade-off among the two criteria.

Figures 2 (a), (b), and (c) display the cumulative number
of vehicles that have been admitted to enter the network
(Admitted vehicles), completed their trips (Exit vehicles),
and the number of vehicles that desire to arrive at their
destinations (Demand) for the congested demand scenario,
using the Pareto solutions of J∗

COC , J∗
TTT , and J∗

OTA,
respectively. The comparison of the results in the Figure

2 (c) reveals that the J∗
OTA solution outperforms in terms

of the number of vehicles that arrive at their destination
on-time, but it has the poorest performance in terms of
travel times reductions. Conversely, Figure 2 (b) shows that
J∗
TTT provides better performance in terms of travel time

savings but has the worst performance according to the OTA
criterion, where an increase in demand results in the need to
compromise the arrival times of some vehicles to maintain
short travel times. Moreover, Figure 2 (a) indicate that, the
J∗
COC solution offers a balanced trade-off between the two

criteria by providing significant travel time savings while also
accommodating the majority of vehicles to arrive on-time.

VI. CONCLUSIONS
This work presents the OTA problem that results in a

nonconvex nonlinear multi-objective optimization program.
An efficient solution is obtained through a convex relaxation
method in which the NBI method is employed to generate
a representative Pareto Front. Finally, the Nash bargain
solution is used to select the best Pareto solution. This
approach assumes that demand is known in advance, so
future research will focus on developing a robust approach
that can anticipate uncertainties in demand distributions.
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