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Abstract— Tendon-based anthropomorphic robotic hand im-
plementations generally lack the ability to measure the joint
angles, as the encoder installed for directly measuring the joint
angle may compromise the dexterity of the hand. In this paper,
we present a computational approach to estimate the joint
positions of the hand using the measured tendon displacements
and tensions. First, we introduce an efficient framework for
the kinematic description of an anthropomorphic hand based
on Denavit-Hartenberg’s description. Then, we use a simplified
tendon model to derive a system of nonlinear equations for
the joint positions, which is finally solved by a gradient-based
optimization solver. We used the model to control the hand
along commanded gestures by feeding back the estimated joint
angles through the moment arm Jacobian. The effectiveness
and limitations of this method is illustrated in MuJoCo simula-
tion environment on the Anatomically Correct Biomechatronic
Hand having a 5 and 6 degrees of freedom kinematic models
for the long fingers and the thumb, respectively.

Index Terms— Biomechatronic hand, tendon-based actuation,
posture estimation, Denavit-Hartenberg

I. INTRODUCTION

In robotics, it is still a challenge to develop anthropo-
morphic hand models that can imitate the dexterity of the
human hand. A commonly used approach to achieve better
biological accuracy is to mimic the entire biological structure
of the hand, including the tendon-based actuation mechanism
of the hand [1]–[8].

In particular, the Anatomically Correct Biomechatronic
(ACB) Hand developed by Tasi et al. [8] precisely follows
the shapes and structures of a human hand to mimic human
hand’s dexterity as much as possible. In such robotics
systems the bones of the fingers can be displaced along
more degrees of freedom compared to the segments of a
conventional robotic manipulator. Differently from [5]–[7],
the metacarpals of long fingers in [8], for example, can
rotate about all the three axes (Pitch, Yaw, and Roll). For
such models, even kinematic description is difficult using
the Denavit-Hartenberg (DH) convention, see, e.g., [9], [10].

Needless to say that the precise knowledge of the joint
posture is essential for control algorithms [11], [12], [13].
However, as encoder installed to the (possibly multiple DoF)
joints would compromise the mobility of the hand, the joint
angles are generally not measured but estimated, e.g., from
the tendon excursions using feedforward neural networks
[14] or through motion capture [15]. As demonstrated in
[16], joint coupling also allows exact gesture computation
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Fig. 1. Bone structure of the ACB Hand at rest position. Abbreviations of
the bones are given in the left figure, whereas, the right figure illustrate the
joints with their names, and their degrees of freedom (i.e., the axes of free
rotations).

from tendon excursions, but it significantly reduces the
manipulators functionality compared to a human hand.

The major contribution of this paper is a joint posture
estimation method for the ACB Hand model by solving a
system of nonlinear equations. Additionally, we propose a
systematic Denavit-Hartenberg’s (DH) description for finger-
type manipulators where the links are connected irregularly
by 3 degrees of freedom (DoF) joints. Our approach is not
a data-based machine learning solution, but an analytical
method, iteratively improving the estimates and the con-
trol values. As a benefit, in this case the cause-and-effect
relationships can be identified (eg. as it helped us in the
tendon placement optimization on the in-silico model), the
whole control process is more humanly understandable. On
contrary, as a limitation we can see that not all of the gestures
and gesture-transients can be tackled seamlessly. For such
high-dimensional problems the data-driven solutions could
be more powerful, apart from their black-box nature.

II. COMPUTE JOINT ANGLES AND EXCURSION OF
CONNECTED TENDON SEGMENTS

A. Bone structure and its kinematic model

In this paper, we follow the bone structure developed
by Tasi et al. [8], where the bones are connected by 1,
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2, or 3 DoF joints. The flexion-extension is described by
Pitch rotation, adduction-abduction is the Yaw rotation, and
the pronation-supination is given by Roll rotation. The
metacarpophalangeal (MCP) joints of ACB Hand has 3 DoF,
allowing the proximal phalanges (PP) to be displaced in both
Pitch, Yaw and Roll directions. The thumb carpometacarpal
(TCMC) joint has 2 DoF, thus the metacarpal (MC) of the
thumb can freely rotate about both Pitch and Yaw axes. The
proximal interphalangeal (PIP), distal interphalangeal (DIP)
joints, and the interphalangeal (IP) of the thumb have a free
hinge motion only about the Pitch axis. The bone structure
is illustrated in Figure 1.

The irregular alignment of the cartilages causes two bones
to deflect and twist relative to each other (even in the rest
position). These irregularities are modeled by offset angles.
The deflection is described Pitch and Yaw offsets, whereas,
the twist is given by the Roll offset.

In our geometric model, the bone structure is built such
that the alignment of two bones can be described by six
angles: three fixed offset angles and the rotations about the
three free joints. One possible way to construct a DH table
for such robotic manipulators with n links and 3-DoF joints
is given in Table I, where (Xo, Yo, Zo) is the coordinate of
the first joint and Lk is the length of the kth link. This
convention allows the removal of the appropriate pair of
(3j, 3j+1) rows when a Yaw rotation is missing, e.g., when
Joint 1 Yaw vanishes, rows (3, 4) are negligible. Using the
presented convention, the DH tables of a long finger and the
thumb are given in Tables II and III, respectively.

B. Tendon structure

For simplicity, we discuss only the index finger, which is
manipulated by nm = 5 muscles, namely, flexor digitorium
superficialis (FDS), flexor digitorium profundus (FDP), ex-
tensor digitorium communis (EDC), lumbrical (LUM), and
ulnar interosseous (UI). Tendons EDC, UI, and LUM are
divided, then, connected again such that they form two lateral
bands (LBs), the extensor slip (ES), and the terminal extensor
(TE). We note that this tendon structure corresponds to that
presented in [11] and is a simplified version of [8].

As illustrated in Figure 2, the tendon structure of the
index finger is described by a directed acyclic graph having
three types of vertices: starting sites (Vm), junctions (Vj), and
terminal sites (Vbn). A starting site is connected to a muscle,
whereas, a terminal site is fixed to a bone. The number of
edges starting from a vertex v is called the out-degree of the
vertex and is denoted by d−(v). Similarly, d+(v) denotes
the number of edges arriving to vertex v and is called the
in-degree if v. A tendon segment is a directed edge of the
graph, which connects two vertices in four possible ways:

• a starting site with a terminal site (vm → vbn),
• a starting site with a junction (vm → vj),
• a junction with a terminal site (vj → vbn),
• a junction with a junction (vj → v′j),

such that every starting (vm ∈ Vm) and terminal sites (vbn ∈
Vbn) and junctions (vj ∈ Vj) satisfy the following

d+(vm) = 0, d−(vm) = 1,

d+(vbn) = 1, d−(vbn) = 0,

min
(
d+(vj), d−(vj)

)
≥ 1,

max
(
d+(vj), d−(vj)

)
≥ 2.

(1)

i d ϑ a α

Zo 0 Xo −90◦

Yo −90◦ 0 Joint 1 Roll Offset
1 0 Joint 1 Yaw Offset 0 −90◦

2 0 Joint 1 Pitch Offset 0 Joint 1 Roll
3 0 0 0 90◦

4 0 Joint 1 Yaw 0 −90◦

5 0 Joint 1 Pitch L1 Joint 2 Roll Offset
6 0 0 0 90◦

· · · · · · · · ·
6k−5 0 Joint k Yaw Offset 0 −90◦

6k−4 0 Joint k Pitch Offset 0 Joint k Roll
6k−3 0 0 0 90◦

6k−2 0 Joint k Yaw 0 −90◦

6k−1 0 Joint k Pitch Lk Joint k+1 Roll Offset
6k 0 0 0 90◦

· · · · · · · · ·
6n−2 0 Joint n Yaw 0 −90◦

6n−1 0 Joint n Pitch Ln 0

TABLE I
DH TABLE FOR A MANIPULATOR WITH n LINKS CONNECTED

IRREGULARLY THROUGH 3-DOF ROTARY JOINTS

i d ϑ a α

Zo 0 Xo −90◦

Yo −90◦ 0 CMC Roll offset
1 0 CMC Yaw offset 0 −90◦

2 0 CMC Pitch offset LMC MCP Roll offset
6 0 0 0 90◦

7 0 MCP Yaw offset 0 −90◦

8 0 MCP Pitch offset 0 MCP Roll
9 0 0 0 90◦

10 0 MCP Yaw 0 −90◦

11 0 MCP Pitch LPP PIP Roll offset⋆

14 0 PIP Pitch offset 0 0
17 0 PIP Pitch LMP DIP Roll offset⋆

20 0 DIP Pitch offset 0 0
23 0 DIP Pitch LDP 0

⋆PIP and DIP Yaw offsets are missing

TABLE II
DH TABLE OF THE 5 DOF LONG FINGERS OF ACB HAND.

i d ϑ a α

Zo 0 Xo −90◦

Yo −90◦ 0 TCMC Roll Offset
1 0 TCMC Yaw Offset 0 −90◦

2 0 TCMC Pitch Offset 0 90◦

4 0 TCMC Yaw 0 −90◦

5 0 TCMC Pitch LMC MCP Roll Offset⋆

8 0 MCP Pitch Offset 0 MCP Roll
9 0 0 0 90◦

10 0 MCP Yaw 0 −90◦

11 0 MCP Pitch LPP IP Roll Offset⋆

14 0 IP Pitch Offset 0 0
17 0 IP Pitch LDP 0

⋆Yaw offsets are missing at the thumb’s MCP and IP joints

TABLE III
DH TABLE FOR THE 6 DOF THUMB FINGER OF ACB HAND.
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In the last condition, we assumed that every junction has at
least one degree (in- or out-) greater than 1. Otherwise, the
trivial junction can be omitted such that the tendon segment
arriving to the junction can be merged to the segment starting
from the junction.

A root segment is a tendon segment connected directly
to a muscle through a starting site (vm). Let nm denote
the number of root segments and nct the number of tendon
segments connected to other tendons. The overall number of
tendon segments is ns = nm + nct. The ordinal numbering
of tendon segments is such that the first nm segments are
roots, followed by nct connected segments.

A tendon branch is a sequence of segments connecting a
starting site vm and a terminal site vbn, i.e., connecting a
muscle with a bone, see, e.g., branch (4) – (10) – (15) –
(18) in Figure 2. The number of tendon branches (nb) can
be counted as follows:

nb = nm +

nj∑
i=1

(
d+(vj,i)− 1

)
= nm − nj +

nj∑
i=1

d+(vj,i)︸ ︷︷ ︸
nct

.

(2)
One may observe that the sum of out degrees of junctions
correspond to the number of connected tendons nct. This fact
is already anticipated in (2). Finally, we may conclude that
the number of junctions together with the number of branches
are equal to the number of tendon segments, formally:

nb + nj = nm + nct = ns. (3)

The nm = 5 tendons of the long fingers have nb = 10
branches (B0–B9) in total:

FDP: (1) [B0]

FDS: (2)−
{
(6)

(7)

[B1]
[B2]

UI: (3)−
{
(8)− (15)− (18)

(9)− (16)

[B3]
[B4]

EDC: (4)−


(10)− (15)− (18)

(11)− (16)

(12)− (17)− (18)

[B5]
[B6]
[B7]

LUM: (5)−
{
(13)− (16)

(14)− (17)− (18)

[B8]
[B9]

(4)

III. POSTURE ESTIMATION FROM TENDON EXCURSION

A. Preliminaries
The index finger has nθ = 5 free joints (MCP Roll, MCP

Yaw, MCP Pitch, PIP Pitch, and DIP Pitch). The angles of
free joints are collected in a vector θ ∈ Rnθ . Let θ0 ∈ Rnθ

denote the angles corresponding to the equilibrium position
when all tendons are relaxed. It is reasonable to assume that
that an any admissible gesture of the finger can be uniquely
determined by a vector of joint angles θ. However, we do not
expect that a tendon excursions pattern uniquely determines
a posture and vice-versa. Nevertheless, a simple kinematic
model allows us to compute the length of the piecewise
straight tendons passing through some well-define site points,
which fixed relative to the bones.

Let Ls,i(θ) denotes the gesture-dependent length of tendon
segment i ∈ {1, . . . , ns} (e.g., segments 1–18 in Figure
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Fig. 2. Tendon structure of the index finger

2, ns = 18). The length of a segment is calculated by
the Euclidean distance between its constituent site points.
When a tendon bypasses the joint around the longer arch,
the segment is complemented with two auxiliary site points
to approximate the curve of the tendon with a piecewise
straight tendon structure. Ls0,i = Ls,i(θ0) denotes the length
of the ith segment in the equilibrium position. The excursion
of the ith segment is denoted by ℓs,i(θ). The acting tension
along the ith segment is fs,i = ki ℓs,i, where ki =

E·A
Ls0,i

is the
spring (or stiffness) coefficient, E is Young’s (tensile) elastic
modulus, and A is the cross section area of the tendon. Then,

Ls(θ) =

(
Lm(θ)
Lct(θ)

)
=


Ls,1(θ)
. . .

Ls,nm(θ)
Ls,nm+1(θ)

. . .
Ls,nm+nct(θ)

 ,

similarily

ℓs(θ) =

(
ℓm(θ)
ℓct(θ)

)
, or fs =

(
fm
fct

)
.

Let ∆Lm,i denote the length of stretched tendon segment
coiled on the motor shaft, i ∈ {1, . . . , nm}. When ∆Lm,i

is positive, tendon i is coiled up on the shaft, whereas a
negative ∆Lm,i means that tendon is coiled down relative to
the equilibrium length.

B. Excursion from tendon structure model

In the knowledge of the joint angles θ ∈ Rnθ , we are able
to approximate the length of each tendon segment with the
assumption that the site points and junctions are fixed relative
to the bones of the finger. Let Ls : Rnθ → Rns denote this
mapping, such that Ls,i(θ) denotes the gesture-dependent
length of the ith segment, i ∈ {1, . . . , ns}. During the model
description, the junctions were positioned relatively to the
bones in the equilibrium position of the fingers represented
by angles θ0, therefore, the length of tendon segments
Ls0 = Ls(θ0) in the equilibrium position well approximates
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the actual lengths of tendons of the physical robotic hand
prosthesis.

The length of tendon branches Lb(θ) in an arbitrary
gesture (θ) can be computed by the sum of the appropriate
tendon segments as follows:

Lb(θ) = Cb,s Ls(θ), (5)

in particular

Lb0 = Cb,s Ls0 = Cb,s Ls(θ0), (6)

where Cb,s ∈ Rnb×ns is a sparse matrix, in which the (i, j)th
element is 1 if the ith branch contains the jth segment and
0 otherwise. The actual value of Cb,s for the long fingers is
given as follows:

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18
J1 0 -1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
J2 0 0 -1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
J3 0 0 0 -1 0 0 0 0 0 1 1 1 0 0 0 0 0 0
J4 0 0 0 0 -1 0 0 0 0 0 0 0 1 1 0 0 0 0
J5 0 0 0 0 0 0 0 -1 0 -1 0 0 0 0 1 0 0 0
J6 0 0 0 0 0 0 0 0 -1 0 -1 0 -1 0 0 1 0 0
J7 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 0 0 1 0
J8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 1


= Cj,s = (Cj,m Cj,ct) ∈ Rnj×ns . (7)

Remark 1: Although the length of segments are computed
for junctions fixed to the bones, this modeling error is
vanishingly small in Lb(θ) as the length of segments are
accumulated along a tendon branch.

C. Measured or preliminarily available variables

First of all, the tensions fm ∈ Rnm acting in tendons
directly connected to the muscles can be obtained from the
servo motor armature current, or by using custom tension
sensors, e.g., [14]. Secondly, the lengths of tendon segments
∆Lm ∈ Rnm coiled on the motor shaft can be inferred from
the servo motor’s encoder. Whereas, Young’s modulus E,
the cross section area A, and hence the spring coefficients
ki =

E·A
Ls0,i

of the tendon segments can be measured apriori,
i ∈ {1, . . . , ns}.

D. Unknown variables

Since no encoder are mounted in the finger joints, the
angles θ ∈ Rnθ of the free joints are all unknown.
Moreover, the actual excursion ℓct ∈ Rnct , and hence the
acting tensions fct = Kctℓct in the connected tendons
are unknown. Diagonal matrix Kct contains the spring
coefficients of the connected tendon segments, i.e., Kct =
diag(knm+1, . . . , knm+nct).

E. Dependent variables

Our model allows to compute the total excursion of a
tendon branch in two different ways. First, we can infer it
from the excursions of individual segments, which form the
branch, namely:

ℓb = Cb,sℓs = Cb,mℓm + Cb,ctℓct. (8)

Secondly, the fixed-site geometric tendon model makes it
possible to compute the total length, and hence the excursion

of a branch from the gesture of the hand as follows:

Lb(θ) + ∆Lb︸ ︷︷ ︸
stretched length of the branch

−
unstretched length of the branch︷︸︸︷

Lb0 = ℓb︸︷︷︸
total excursion along the branch

(9)

Then, an equation from (8) and (9) can be obtained as
follows:

Lb(θ)+Cb,m ∆Lm−Lb0=Cb,m K−1
m fm︸ ︷︷ ︸
ℓm

+Cb,ct ℓct. (10)

Finally, we exploit the fact that the acting forces in a junction
cancel each other out. E.g., in Figure 2, forces f2, f6, and
f7 acting in junction {J1} must satisfy f2 = f6 + f7. These
conditions can be described by the following equation:

Cj,s fs = Cj,m fm + Cj,ct Kctℓct = 0, (11)

where Cj,s represents the connection matrix of tendon junc-
tions. The (i, j)th element of Cj,s is −1 if segment j enters
junction i, +1 if it leaves, and 0 if they are not connected.
At this point we assumed that all forces arising at a junction
act along the same line, namely, the angle between every
two force vectors are 0 or π. The actual value of Cj,s for the
long fingers is

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8 ℓ9 ℓ10 ℓ11 ℓ12 ℓ13 ℓ14 ℓ15 ℓ16 ℓ17 ℓ18
B0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
B2 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
B3 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1
B4 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
B5 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1
B6 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0
B7 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1
B8 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0
B9 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1


= Cb,s = (Cb,m Cb,ct) ∈ Rnj×ns . (12)

It is worth mentioning that the number of equations in (10)
and (11) are nb and nj, respectively. Whereas, the number of
unknown variables is nθ +nct. Moreover, it is reasonable to
assume that the number of muscle actuators (nm) of a finger
is at least equal to the number of free joints nθ, i.e.,

nθ ≤ nm. (13)

If we add nct = ns − nm = nb + nj − nm to both sides of
inequality (13), we obtain

nθ + nct ≤ nb + nj. (14)

Finally, we can conclude that the number of equations in
(10) and (11) is at least the number of unknown with the
assumption that nθ ≤ nm.

IV. SIMULATION EXPERIMENT

Here, we evaluate a simple posture tracking controller,
in which the error between the desired position θ(d) and
the estimated position θ̂ is fed back through the Jacobian
matrix. The experiment is performed in MuJoCo simulation
environment [17], in which the tendon length is computed
as the average length of tendon branches. The branches
of the tendons were give previously in (4). In MuJoCo’s
modelling language, junctions {J5}–{J8} are neglected such
that the tendons LB, ES, ET are composed of the independent
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branches of EDC, UI, and LUM.
Let Lm : Rnθ → Rnm denote the length of the tendons,

and consider its Jacobian matrix:

Rm(θ) =
∂Lm

∂θ
(θ) ∈ Rnm×nθ . (15)

The actuation level is then computed by the displacement
of the starting site of the root segment, which is connected
directly to the shaft of the servo motor. In a given time step,
the displacement of the starting site is modified as follows:

∆L+
m = ∆Lm −Rm(θ)

(
KP θ̃ +KI

∑
kh θ̃(k)

)
, (16)

where θ̃ = θ̂ − θ(d) is the tracking error, h is the sampling
time, ∆L+

m denotes the length of tendon coiled on the
shaft in the next time step. The summation term in (16)
constitutes the cumulative error feedback, which together
with the proportial feedback realize a proportional-integral
(PI) controller. In computations, we used KP = 0.7, KI =
0.1.

To solve (10) and (11), we executed a constrained
gradient-based search without a cost function. For algo-
rithmic differentiation, we used CasADi [18]. To solve the
non-linear feasibility problem, we used IPOPT [19], an
interior point line search algorithm, with the MUlti-frontal
Massively Parallel sparse direct Solver (MUMPS) [20], [21].
The MuJoCo simulation was executed at 500 Hz, whereas,
the posture estimation with IPOPT lasts about 10-15 mil-
liseconds. Therefore, the posture observation was updated at
about 50 Hz.

In Figure 3, we illustrate several desired gestures achieved
sequentially, where the first gesture must be reached from
the resting position, and each subsequent position is attained
from the previous one. Finally, the hand is directed back
to the resting position. In all panels (G1)–(G6) in Figure 3
the red transparent bodies illustrate the desired gesture, the
yellow transparent bodies highlight the estimated gestures,
and the gray solid bodies show the actual position of the
hand. In Figure 4, we present the time functions of the actual
and observed angle positions together with the range of the
angles.

The inaccurate estimation in (G5) can be attributed to the
fingers colliding during fist clenching. At this gesture, a few
joint angles of the simulated hand, goes to the infeasible
region (dashed red area), which may be due to the soft
implementation of constraints in MuJoCo [22]. One may
observe further observation errors in Roll angle estimation in
Plots 6 and 11. Based on the authors’ experience, the MPC
Roll angles are difficult to estimate with the current tendon
structure. Nevertheless, it is noteworthy that the lengths of
the feasible intervals for the MPC Roll angles are only 3 to
13 degrees.

Another unusual event took place at (G4) in Plot 11, when
the actual Roll angle is closer to the reference than the
estimated value. But it is also evident that the angle did
not change compared to (G3). In the case of the gesture
(G4), the method did not precisely compute the MPC Roll
value, nonetheless, the relatively small difference between
the observed and actual angles is insufficient to significantly
alter the deviation from the reference in the given time
window.

The results suggest that, except for the Roll angles and
during collision events, the method demonstrates favorable

(G1) (G2) (G3)

(G4) (G5) (G6)

Fig. 3. Desired gestures (red phantom bodies) compared to the gestures
achieved (grey bodies) using observer-based control. The observed gestures
are illustrated by the yellow phantoms.

controllability and observability characteristics. A further
research direction will focus on enhancing both the accuracy
of observation and control through various regression and
machine learning techniques.

V. CONCLUSION

This paper addressed the challenge of developing kine-
matic models to estimate the posture of the Anatomically
Correct Biomechatronic Hand model [8] from the measured
tendon tension and displacement. The paper highlighted that
estimating the joint angles in such complex hand model is
challenging due to the increased degrees of freedom in the
bone structure, the complexity of the tendon length com-
putations. Although the solution of the nonlinear equations
are possible with the efficient gradient-based solvers, the
structural controllability of the developed in silico model
should be addressed in the future.

Although the solution of the nonlinear equations are pos-
sible with the efficient gradient-based solvers, the structural
controllability of the developed in silico model should be
addressed in the future. This is especially true in the case of
hindered movements, when unexpected physical constraint
occurs. The uncertainty - inaccuracy experienced along axis
Roll suspected to be caused by the given structural properties
of the tendon system.

In summary, this article presents a novel approach for
joint posture estimation in high-degree-of-freedom anthro-
pomorphic robotic hand models and offers valuable insights
into the complexities and challenges associated with achiev-
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Fig. 4. Results of the posture tracking controller, red lines are the reference, the black illustrate actual angles, the yellow highlight the estimated angles.
The labels (G1)–(G6) in the top of each plot highlight the current gesture to be achieved.

ing dexterity and control in such systems. The proposed
methodology and the DH description provide a foundation
for further research and advancements in the field of robotic
hand manipulation and control.
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