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Abstract— The transactive control paradigm enables a flexi-
ble electricity-consuming asset to offer its flexibility upstream
by simply adapting its consumption profile in response to
pricing signals. A consumer’s response to prices over time
is modeled through a so-termed flexibility function. However,
a consumer’s flexibility function needs to be adaptive to
account for changes to the consumer’s internal dynamics over
time. This paper proposes an adaptive mechanism for price
signal generation using a piecewise linear approximation of a
flexibility function with unknown parameters. In this adaptive
approach, the price signal is parameterized and the parameters
are changed adaptively such that the output of the flexibility
function follows a reference demand signal. This is guaranteed
using the Lyapunov stability theorem. The proposed method
does not require an estimation algorithm for unknown param-
eters, which eliminates the need for persistency of excitation
of signals, and consequently, simplifies practical adoption and
deployment.

I. INTRODUCTION

Expanding renewable energy sources, like solar and wind
power, decentralizes energy production. Consequently, it is
the energy demand that needs to be adjusted to meet the
available generation [1]. Thereby, the energy system is in
a transition from a centralized system with relatively few
power generation facilities to a decentralized system where
the balance is ensured by the demand-side response and local
intelligent systems [2]–[4].

Demand Side Management (DSM) consists of various
control strategies for load shifting, peak shaving, or demand
reduction [5]. This requires the demand side profile to be
flexible, that is, it should be capable of managing its demand
and generation based on user needs, grid balancing, and
local climate conditions [6], [7]. For example, the flexibility
potential of the thermal dynamics of a building is dependent
on its inherent thermal mass and storage options such as
water tanks, along with the Heating, Ventilation, and Air
Conditioning (HVAC) system. Advanced control design has
shown to have great potential for activating this flexibility
potential [5], [8].

The flexibility function, a mapping between prices and
energy consumption over a time horizon in a price-responsive
system, is proposed as a minimum interoperability mech-
anism between the aggregator and the individual flexible
assets (e.g., buildings) [9]. A generalized version of the flexi-
bility function involving a nonlinear mapping between price
and demand is provided in [10]. Specifically, the mapping
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describes the temporal evolution of the energy demand in
response to changes in the energy price [11]. Therefore,
it is the essential component of a transactive-control DSM
framework [12], where a resource’s controller receives a
set of prices (communicated by an upstream controller) and
adapts its consumption profile in response to these prices.

However, this relationship between prices and energy
demand is not static. It changes in the course of days or
weeks, due to numerous factors including changes in ambient
conditions (e.g. humidity) and consumer behavior. Thus, the
dynamics of the price-demand relationship evolve over time,
which motivates the design of a mechanism that accounts
for these variations. Such considerations can be modeled
by introducing parametric uncertainty into the flexibility
function. Passive methods are based on robust fixed-structure
control systems considering bounded parametric uncertainty
[13]–[16], whereas active methods are based on adaptive
control methods that adjust the control law based on the
changes in system parameters [17]–[21].

This paper proposes an adaptive flexibility controller ca-
pable of updating the control law, i.e. the price signal, based
on the changes in the price-demand dynamics. To the best
of our knowledge, existing methods based on the flexibility
function do not account for parametric uncertainty. In this
adaptive approach, the price signal is parameterized and the
parameters are changed adaptively such that the demand is
able to closely follow a reference demand signal. Another
benefit of employing this approach is that it is not based
on system identification methods. Hence, it does not require
any persistency of excitation assumption on the input signals
[22]. Moreover, a projection algorithm has been employed
to confine the adaptive parameters within a prespecified
compact set to guarantee the prices’ boundedness [23], [24].

Finally, on the practical side, the controller’s adaptation
capability effectively eliminates the burden of conducting
a manual, customized modeling-and-control study for each
flexibility resource separately; rather, the adaptive controller
can be deployed seamlessly across different assets, in a plug-
and-play fashion, which allows for mass adoption.

This paper is organized as follows. Section II provides an
overview of the flexibility function considered in this work.
Section III presents a linearized version of the flexibility
function. Section IV provides an optimal control signal
assuming that all parameters are known. Considering un-
known parameters, Section V proposes an adaptive flexibility
function mechanism while ensuring the boundedness of the
control signal. Section VI presents the simulation results, and
a summary is provided in Section VII.
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II. FLEXIBILITY FUNCTION

Nonlinear dynamics of the price-demand relationship are
proposed in [10]. In this study, we focus on the deterministic
dynamics of the price-demand relationship, as given in the
following differential equation form

𝑑X𝑡/𝑑𝑡 =
1
𝐶
(𝐷𝑡 − 𝐵𝑡 ), (1)

𝛿𝑡 = ℓ( 𝑓 (X𝑡 ) + 𝑔(𝑢𝑡 )), (2)
𝐷𝑡 = 𝐵𝑡 + 𝛿𝑡Δ(𝟙𝛿𝑡>0 (1 − 𝐵𝑡 ) + 𝟙𝛿𝑡<0𝐵𝑡 ), (3)

where X ∈ [0, 1] ⊂ R is the state of charge, 𝐵 ∈ [0, 1] ⊂ R
is the baseline demand, 𝑢 ∈ [0, 1] ⊂ R is the energy price,
𝛿 ∈ [0, 1] ⊂ R is the demand change, 𝐷 ∈ [0, 1] ⊂ R is
the expected demand, 𝐶 is the capacity of flexible energy,
and Δ ∈ [0, 1] is the proportion of flexible demand. The
above equations are constructed based on the normalized
parameters between 0 and 1. Moreover, the function 𝟙𝛿𝑡<0
is equal to 1 when 𝛿𝑡 < 0 and 0 otherwise, and the function
𝟙𝛿𝑡>0 is equal to 1 when 𝛿𝑡 > 0 and 0 otherwise. The
nonlinear functions involved in the flexibility function are
given by

𝑔(𝑢) = 𝛽1𝐼𝑠1 (𝑢) + · · · + 𝛽7𝐼𝑠7 (𝑢), (4)

𝑓 (X) = (1 − 2X + 𝛼1 (1 − (2X − 1)2)) (𝛼2 + 𝛼3 (2X − 1)2

+ 𝛼4 (2X − 1)6), (5)

ℓ( 𝑓 (X)+𝑔(𝑢)) = −1 + 2
1 + 𝑒−𝑘 ( 𝑓 (X)+𝑔 (𝑢) ) , (6)

where 𝐼𝑠1, . . . , 𝐼𝑠7 are I-spline functions [25], and the
parameters 𝛽1, . . . , 𝛽7, 𝛼1, . . . , 𝛼4, and 𝑘 are assumed to be
unknown. They can be identified using different approaches,
e.g., by maximizing the likelihood of observing the actual
measurements [26]. By design, the functions 𝑓 (.) and 𝑔(.)
are monotonically decreasing and ℓ(.) is monotonically in-
creasing (see Figure 1).

Remark 1: The relationship between energy price and
energy demand is described by the nonlinear function 𝑓 (.),
while the relationship between state of charge and energy
demand is described by the nonlinear function 𝑔(.). If these
functions have positive values, it results in an increase in
demand, and if they have negative values, it leads to a
decrease in demand.

In the sequel, we first linearize the flexibility function in
Section III. Then, two controllers are designed to generate
price such that the demand follows its reference. In Section
IV, the controller is designed assuming that the parameters
are known. In Section V, we design an adaptive price
generator when some parameters of the system are not
known.

III. DETERMINISTIC LINEARIZED FLEXIBILITY
FUNCTION

The nonlinear functions 𝑓 and 𝑔 are identified for a water
tower and three buildings in [10]. However, it is shown in this
paper that these functions are approximately linear in a wide
range of energy prices and states of charge. A piecewise
linear version of these functions has been used in [27] to

describe demand response potential. Inspired by the above-
mentioned approaches and considering an example of the
nonlinear functions of the flexibility function, 𝑓 (X), 𝑔(𝑢),
and ℓ( 𝑓 (X) + 𝑔(𝑢)), in Figure 1, one can assume that 𝑓 (X),
𝑔(𝑢), and ℓ( 𝑓 (X) +𝑔(𝑢)) behave linearly in a range [𝜖1, 𝜖2]
for some 𝜖1 and 𝜖2, 0 ≤ 𝜖1, 𝜖2 < 1. One can find the slope of
𝑓 (X), 𝑔(𝑢), and ℓ( 𝑓 (X) + 𝑔(𝑢)) around a point in [𝜖1, 𝜖2],
as 𝜂1, 𝜂2, and 𝜂3, respectively. Also, the biases for 𝑓 (X) and
𝑔(𝑢) can be considered as 𝜆1 and 𝜆2, respectively. Using the
linearized version of the mentioned functions, (1)–(3) can be
rewritten as

𝑑X𝑡/𝑑𝑡 =
Δ

𝐶
𝜂3 (𝜂1X𝑡 + 𝜆1 + 𝜂2𝑢𝑡 + 𝜆2)

× (𝟙𝛿𝑡>0 (1 − 𝐵𝑡 ) + 𝟙𝛿𝑡<0𝐵𝑡 ), (7)
𝛿𝑡 = 𝜂3 (𝜂1X𝑡 + 𝜆1 + 𝜂2𝑢𝑡 + 𝜆2), (8)
𝐷𝑡 = 𝐵𝑡 + 𝛿𝑡Δ(𝟙𝛿𝑡>0 (1 − 𝐵𝑡 ) + 𝟙𝛿𝑡<0𝐵𝑡 ). (9)

The state equation (7) can be rewritten as the following
piecewise-defined function

𝑑X𝑡/𝑑𝑡 = (10){
Δ
𝐶
𝜂3 (𝜂1X𝑡 + 𝜂2𝑢𝑡 + 𝜆3) (1 − 𝐵𝑡 ), 𝜂3 (𝜂1X𝑡 + 𝜂2𝑢𝑡 + 𝜆3) > 0,

Δ
𝐶
𝜂3 (𝜂1X𝑡 + 𝜂2𝑢𝑡 + 𝜆3)𝐵𝑡 , 𝜂3 (𝜂1X𝑡 + 𝜂2𝑢𝑡 + 𝜆3) < 0,

where 𝜆3 = 𝜆1 + 𝜆2. This implies that the state and output
dynamics can be written in the form of a linear time-varying
dynamical system as

𝑑X𝑡/𝑑𝑡 = 𝑎𝑡X𝑡 + 𝑏𝑡𝑢𝑡 + 𝑑𝑡 , (11)
𝐷𝑡 = 𝐵𝑡 + 𝐶𝑎𝑡X𝑡 + 𝐶𝑏𝑡𝑢𝑡 + 𝐶𝑑𝑡 , (12)

where 𝑎𝑡 and 𝑏𝑡 are defined as

𝑎𝑡 =

{
Δ
𝐶
𝜂3𝜂1 (1 − 𝐵𝑡 ), 𝜂3 (𝜂1X𝑡 + 𝜂2𝑢𝑡 + 𝜆3) > 0,

Δ
𝐶
𝜂3𝜂1𝐵𝑡 , 𝜂3 (𝜂1X𝑡 + 𝜂2𝑢𝑡 + 𝜆3) < 0, (13)

𝑏𝑡 =

{
Δ
𝐶
𝜂3𝜂2 (1 − 𝐵𝑡 ), 𝜂3 (𝜂1X𝑡 + 𝜂2𝑢𝑡 + 𝜆3) > 0,

Δ
𝐶
𝜂3𝜂2𝐵𝑡 , 𝜂3 (𝜂1X𝑡 + 𝜂2𝑢𝑡 + 𝜆3) < 0, (14)

and

𝑑𝑡 =

{
Δ
𝐶
𝜂3𝜆3 (1 − 𝐵𝑡 ), 𝜂3 (𝜂1X𝑡 + 𝜂2𝑢𝑡 + 𝜆3) > 0,

Δ
𝐶
𝜂3𝜆3𝐵𝑡 , 𝜂3 (𝜂1X𝑡 + 𝜂2𝑢𝑡 + 𝜆3) < 0.

(15)
If 𝜂3 (𝜂1X𝑡 + 𝜂2𝑢𝑡 + 𝜆3) = 0, then 𝑎𝑡 = 𝑏𝑡 = 𝑑𝑡 = 0.

Remark 2: By design, the functions 𝑓 and 𝑔 are
monotonously decreasing and ℓ is monotonously increasing
[10]. Therefore, 𝜂1 < 0, 𝜂2 < 0, and 𝜂3 > 0 and 𝑎𝑡 and 𝑏𝑡 are
negative for all 𝑡 ≥ 0. Furthermore, 𝜆1 and 𝜆2 are positive
scalars. The negativity of 𝑎𝑡 is important to the stability
analysis of the linearized flexibility function. Also, having
information on the sign of 𝑏𝑡 is required for the adaptive
flexibility function design and will be utilized in Section V.

IV. OPTIMAL PRICE GENERATOR
Suppose that the scalar 𝐶 is known and that the values of

the scalar functions 𝑎𝑡 and 𝑏𝑡 are known for all 𝑡 ≥ 0. Then,
by setting 𝐷𝑡 = 𝐷𝑟𝑒 𝑓𝑡 and isolating the input in (12), it can
be shown that applying the price signal

𝑢𝑡 =
1

𝐶𝑏𝑡

(
−𝐶𝑎𝑡X𝑡 − 𝐶𝑑𝑡 − 𝐵𝑡 + 𝐷𝑟𝑒 𝑓 𝑡

)
(16)
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Fig. 1. Schematic of nonlinear functions of the flexibility function and
their linear approximations.

to (11) ensures that the output of the flexibility function, 𝐷𝑡 ,
is equal to the reference demand signal, 𝐷𝑟𝑒 𝑓 𝑡

. It is noted
that 𝐶𝑏𝑡 has a nonzero value for all 𝑡 ≥ 0. However, (16) may
not be feasible since it does not consider the restrictions of
𝑢𝑡 , that is, 𝑢𝑡 ∈ [0, 1]. To this end, an optimization problem
needs to be solved, that minimizes 𝑢𝑡 − 1

𝐶𝑏𝑡
(−𝐶𝑎𝑡X𝑡 −𝐶𝑑𝑡 −

𝐵𝑡 + 𝐷𝑟𝑒 𝑓 𝑡
).

Remark 3: Assume that the values of 𝑎𝑡 , 𝑏𝑡 , and 𝐶 are
known for all 𝑡 ≥ 0, and that the signals 𝐷𝑟𝑒 𝑓 𝑡

and 𝐵𝑡 are
provided for all 𝑡 ≥ 0. Then, the optimization problem

𝑚𝑖𝑛𝑢𝑡

∫ 𝑡𝑘+1

𝑡𝑘

(𝐶𝑏𝑡𝑢𝑡 + 𝐶𝑎𝑡X𝑡 + 𝐶𝑑𝑡 + 𝐵𝑡 − 𝐷𝑟𝑒 𝑓 𝑡
)2,

𝑑X𝑡/𝑑𝑡 = 𝑎𝑡X𝑡 + 𝑏𝑡𝑢𝑡 + 𝑑𝑡 ,

𝑢𝑡 ∈ [0, 1], (17)

finds the optimal price signal for 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1). It is
noted that 𝑢𝑡 is considered constant throughout the interval
[𝑡𝑘 , 𝑡𝑘+1).

Remark 4: Once a daily demand is purchased by an
aggregator, and the daily baseline demand is provided, the
bounds of the integral in the optimization problem (17) can
be extended and an optimal price signal can be calculated
for the whole day.

The procedure for implementing the proposed method of
Section III is given in Implementation Procedure 1.

Implementation procedure 1 Price signal generation algo-
rithm for linearized flexibility function
-Given 𝐷𝑟𝑒 𝑓 𝑡

, 𝐵𝑡 , 𝐶, 𝜂1, 𝜂2, 𝜂3, 𝜆1 and 𝜆2
-Solve the optimization problem (17)

V. ADAPTIVE FLEXIBILITY FUNCTION

In this section, we describe an approach for computing a
control signal, 𝑢𝑡 , when 𝑎𝑡 and 𝑏𝑡 are unknown, such that the
demand, 𝐷𝑡 , converges to its reference value, 𝐷𝑟𝑒 𝑓 𝑡

. Assume
that 𝑎𝑡 and 𝑏𝑡 are piecewise constant.

Rewrite the state dynamics of the linearized flexibility
function (11) as

𝑑X𝑡/𝑑𝑡 = 𝑎X𝑡 + 𝑏(𝑢𝑡 + 𝑑), (18)

where 𝑑 = 𝜆3/𝜂2.
Let the reference dynamics be defined as

𝑑Y𝑡/𝑑𝑡 = 𝜆Y𝑡 +
1
𝐶
𝑟𝑡 , (19)

where Y𝑡 is the state of the reference dynamics and 𝑟𝑡 =

𝐷𝑟𝑒 𝑓 𝑡
− 𝐵𝑡 . Notice that the dynamics (19) is selected such

that Y𝑡 mimics the behaviour of (1) when 𝐷𝑡 = 𝐷𝑟𝑒 𝑓 𝑡
. This

can be done by choosing a negative 𝜆. The negativity of 𝜆

ensures that the reference dynamics are stable.
A controller has to be designed such that it captures the

changes of 𝑟𝑡 and X, and generates a stabilizing control
signal. Thus, we employ the control law

𝑢𝑡 = 𝛼̂𝑡X𝑡 + 𝛽𝑡𝑟𝑡 + 𝜁𝑡 , (20)

where 𝛼̂𝑡 , 𝛽𝑡 and 𝜁𝑡 are control gains. With the control law
(20), the closed loop dynamics can be written as

𝑑X𝑡/𝑑𝑡 = (𝑎 + 𝑏𝛼̂𝑡 )X𝑡 + 𝑏𝛽𝑡𝑟𝑡 + 𝑏(𝜁𝑡 + 𝑑). (21)

If the flexibility function parameters were known, the ideal
parameters could be calculated by comparing the closed-loop
dynamics and the reference dynamics, i.e., 𝛼∗ = 𝜆−𝑎

𝑏
, 𝛽∗ =

1
𝑏𝐶

and 𝜁∗ = −𝑑.
By defining the error dynamics as 𝑒𝑡 = X𝑡 − Y𝑡 , the error

dynamics can be obtained as

𝑑𝑒𝑡/𝑑𝑡 = (𝑎 + 𝑏𝛼̂𝑡 )X𝑡 + 𝑏𝛽𝑡𝑟𝑡 + 𝑏(𝜁𝑡 + 𝑑) − 𝜆Y𝑡 −
1
𝐶
𝑟𝑡 . (22)

Defining the parameter errors as 𝛼̃𝑡 = 𝛼̂𝑡 − 𝛼∗, 𝛽𝑡 = 𝛽𝑡 − 𝛽∗

and 𝜁𝑡 = 𝜁𝑡 − 𝜁∗, the error dynamics (23) can be rewritten as

𝑑𝑒𝑡/𝑑𝑡 = 𝜆𝑒𝑡 + 𝑏𝛼̃𝑡X𝑡 + 𝑏𝛽𝑡𝑟𝑡 + 𝑏𝜁𝑡 . (23)

Definition 1: The projection operator, denoted as Proj, for
two scalars 𝜃 and 𝑌 is defined as

Proj(𝜃,𝑌 ) ≡
{

𝑌 − 𝑌ℎ(𝜃) 𝑖 𝑓 ℎ(𝜃) > 0 & 𝑌

(
𝑑ℎ(𝜃 )
𝑑𝜃

)
> 0

𝑌 otherwise,
(24)

where ℎ(.) : R→ R is a convex function defined as

ℎ(𝜃) = (𝜃 − 𝜃𝑚𝑖𝑛 − 𝜀𝜃 ) (𝜃 − 𝜃𝑚𝑎𝑥 + 𝜀𝜃 )
(𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛 − 𝜀𝜃 )𝜀𝜃

, (25)

where 𝜀𝜃 is the projection tolerance, and 𝜃𝑚𝑎𝑥 and 𝜃𝑚𝑖𝑛 are
the upper and lower bound of 𝜃. These bounds also form the
projection boundary.

The following theorem provides the main results of this
paper. It provides the projection based adaptive laws along
with stability analysis and convergence results.
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Theorem 1: Consider the flexibility function dynamics
(11) and the reference model (19), and assume that 𝑎𝑡 and
𝑏𝑡 are piecewise constant unknown parameters, but the sign
of 𝑏𝑡 is considered to be known. Suppose that the price
signal 𝑢𝑡 , given in (20), is the control input of the flexibility
function dynamics (11)–(12) with the adaptive parameters,
𝛼̂𝑡 , 𝛽𝑡 and 𝜁𝑡 , that are updated using the following projection-
based adaptive laws,

𝑑𝛼̂𝑡/𝑑𝑡 = 𝛾𝛼Proj (𝛼̂𝑡 ,−𝑠𝑔𝑛(𝑏𝑡 )X𝑡𝑒𝑡 ) , (26)

𝑑𝛽𝑡/𝑑𝑡 = 𝛾𝛽Proj
(
𝛽𝑡 ,−𝑠𝑔𝑛(𝑏𝑡 )𝑟𝑡𝑒𝑡

)
, (27)

𝑑𝜁𝑡/𝑑𝑡 = 𝛾𝜁 Proj
(
𝜁𝑡 ,−𝑠𝑔𝑛(𝑏𝑡 )𝑒𝑡

)
, (28)

where a projection operator “Proj” is employed to keep the
adaptive parameters bounded, and 𝛾𝛼, 𝛾𝛽 and 𝛾𝜁 are three
positive adaptation gains. Then, given any initial condition
𝑒0 ∈ R, 𝛼0 ∈ Ω𝛼, 𝛽0 ∈ Ω𝛽 , 𝜁0 ∈ Ω𝜁 , and 𝛼∗ ∈ [𝛼𝑚𝑖𝑛 +
𝜀𝛼, 𝛼𝑚𝑎𝑥−𝜀𝛼], 𝛽∗ ∈ [𝛽𝑚𝑖𝑛+𝜀𝛽 , 𝛽𝑚𝑎𝑥−𝜀𝛽] and 𝜁∗ ∈ [𝜁𝑚𝑖𝑛+
𝜀𝛽 , 𝜁𝑚𝑎𝑥 −𝜀𝛽], 𝛼̃𝑡 , 𝛽𝑡 and 𝜁𝑡 remain uniformly bounded for
all 𝑡 ≥ 0 and 𝑒𝑡 converges to 0 as 𝑡 → ∞. Furthermore, 𝑢𝑡
remains bounded and 𝐷𝑡 converges to 𝐷𝑟𝑒 𝑓 𝑡

.
Proof: Consider the candidate Lyapunov function

𝑉 (𝑒𝑡 ,𝛼̃𝑡 , 𝛽𝑡 , 𝜁𝑡 )

=
1
2
𝑒2
𝑡 +

1
2𝛾𝛼

|𝑏𝑡 |𝛼̃2
𝑡 +

1
2𝛾𝛽

|𝑏𝑡 |𝛽2
𝑡 +

1
2𝛾𝜁

|𝑏𝑡 |𝜁2
𝑡 . (29)

The time derivative of (29) along the trajectories of (23) and
(26)–(28) can be calculated as

𝑑𝑉 (𝑒𝑡 , 𝛼̃𝑡 , 𝛽𝑡 , 𝜁𝑡 )/𝑑𝑡
= 𝜆𝑒2

𝑡 + |𝑏𝑡 | (𝑠𝑔𝑛(𝑏𝑡 )X𝑡𝑒𝑡 + Proj (𝛼̂𝑡 ,−𝑠𝑔𝑛(𝑏𝑡 )X𝑡𝑒𝑡 )) 𝛼̃𝑡

+ |𝑏𝑡 |
(
𝑠𝑔𝑛(𝑏𝑡 )𝑟𝑡𝑒𝑡 + Proj

(
𝛽𝑡 ,−𝑠𝑔𝑛(𝑏𝑡 )𝑟𝑡𝑒𝑡

) )
𝛽𝑡

+ |𝑏𝑡 |
(
𝑠𝑔𝑛(𝑏𝑡 )𝑒𝑡 + Proj

(
𝜁𝑡 ,−𝑠𝑔𝑛(𝑏𝑡 )𝑒𝑡

) )
𝜁𝑡 . (30)

Using the properties of projection algorithm [24], implies
that

𝑑𝑉 (𝑒𝑡 , 𝛼̃𝑡 , 𝛽𝑡 , 𝜁𝑡 )/𝑑𝑡 ≤ 𝜆𝑒2
𝑡 ≤ 0. (31)

The negativity of 𝑑𝑉/𝑑𝑡 implies that 𝑒𝑡 , 𝛼̃𝑡 , 𝛽𝑡 and 𝜁𝑡 are
bounded, which causes 𝑑𝑒𝑡/𝑑𝑡 to be bounded as well. It also
implies that∫ 𝑡

0
|𝜆 |𝑒2

𝑡 𝑑𝑡 ≤ −
∫ 𝑡

0
(𝑑𝑉/𝑑𝑡) 𝑑𝑡 = 𝑉0 −𝑉𝑡 ≤ 𝑉0, (32)

for all 𝑡 ≥ 0, which shows that 𝑒𝑡 ∈ L2. Given that 𝑒𝑡 ∈
L2 ∩ L∞, and 𝑑𝑒𝑡/𝑑𝑡 ∈ L∞, and using Barbalat’s lemma,
one can confirm that lim𝑡→∞ 𝑒𝑡 = 0. Therefore, X𝑡 converges
to Y𝑡 , and since Y𝑡 , by design, follows the trajectories of (1)
with 𝐷𝑡 = 𝐷𝑟𝑒 𝑓 𝑡

, the same holds for X𝑡 . Therefore, the
adaptive price signal 𝑢𝑡 , with the adaptation laws (26) and
(27), leads to the convergence of 𝐷𝑡 to 𝐷𝑟𝑒 𝑓 𝑡

. Moreover,
by knowing the range of change of X𝑡 and 𝑟𝑡 , and by the
selection of the upper and lower bounds of the projection
algorithm, one can guarantee that 𝑢𝑡 is bounded and is kept
in the range [0, 1].

Remark 5: The adaptive update laws (26)–(28) employ a
projection algorithm to keep the parameters of the adaptive

Fig. 2. Block diagram of the proposed adaptive flexibility function.

system bounded, regardless of any stability condition (see
Definition 1). Detailed discussion about the projection algo-
rithm, its properties, and its novel modified versions can be
found in [20], [23], [24].

Remark 6: As described in Remark 2, the sign of 𝑏𝑡 is
always negative by design. Thus, the adaptation laws (26)–
(28) are implementable.

Remark 7: In order to implement the adaptation laws
(26)–(28), one requires to know the values of X𝑡 . Having
the demand or its estimation, 𝐷𝑡 , the baseline, 𝐵𝑡 and the
flexibility capacity, 𝐶, X𝑡 can be calculated using (1) as
X𝑡 =

∫ 𝑡

0
1
𝐶
(𝐷𝑡 − 𝐵𝑡 )𝑑𝑡.

Remark 8: Every day, an aggregator purchases a specific
amount of energy for each hour, 𝐷̄𝑟𝑒 𝑓 . If an estimate of
the hourly demand, 𝐷̄, of a price-responsive energy system
is available along with the hourly baseline, 𝐵̄, one can
implement the proposed adaptive approach and find the
hourly price signal throughout each day. This hourly price
signal can then be used in a model predictive controller or
an energy management system (EMS).

A block diagram of the proposed adaptive flexibility
function is shown in Figure 2. In addition, the procedure for
implementing the proposed method of Theorem 1 is given
in Implementation procedure 2.

Implementation procedure 2 Adaptive price signal gener-
ation algorithm based on the linearized flexibility function
-Given 𝐷𝑡 , 𝐷𝑟𝑒 𝑓 𝑡

, 𝐵𝑡 , 𝐶
-Set 𝜆, 𝛾𝛼, 𝛾𝛽 and 𝛾𝜁
-Set the projection algorithm parameters 𝜁𝛼, 𝜁𝛽 , 𝛼𝑚𝑖𝑛,
𝛼𝑚𝑎𝑥 , 𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥 , 𝜁𝑚𝑖𝑛 and 𝜁𝑚𝑎𝑥

-Provide the reference dynamics Y𝑡 using (19)
-Calculate X𝑡 using Remark 7
-Calculate the error 𝑒𝑡 = X𝑡 − Y𝑡

-Implement the adaptation laws (26)–(28) and find 𝛼̂𝑡 , 𝛽𝑡
and 𝜁𝑡
-Employ the control (20)

VI. SIMULATION RESULTS
The linearized flexibility function is utilized to demon-

strate the effectiveness of the proposed approaches. The
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Fig. 3. Price signal generation using the controller (16) without bounds
on the price signal.
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Fig. 4. Price signal generation using the controller (16) with bounds on
the price signal.

parameters of the linearized flexibility function are 𝜂1 = −1,
𝜂2 = −0.9, 𝜂3 = 1, 𝜆1 = 0.5, 𝜆2 = 0.5, 𝐶 = 2.97 and Δ = 1.

The first scenario considers all of the parameters to be
known. Thus, we follow Implementation procedure 1. First,
we implement (16) without solving optimization or any
bound on the price signal. Figure 3 demonstrates the results
of the linearized flexibility function. The top panel shows
the flexibility state, 𝑋 , its output, 𝐷, baseline signal, 𝐵, and
the reference demand, 𝐷𝑟𝑒 𝑓 . It is seen that 𝐷 follows 𝐷𝑟𝑒 𝑓

conveniently. However, there are some mismatches between
these two at the switching times, i.e. when the sign of 𝛿𝑡
changes. At the switching times, the control mechanism
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Fig. 5. Price signal generation using Implementation procedure 1.
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Fig. 6. Price signal generation using Implementation procedure 2.

compensates such that 𝐷 follows 𝐷𝑟𝑒 𝑓 after a short period
of time. The middle panel illustrates the generated price
signal. It is seen that the generated price signal is not limited
between 0 and 1. The third panel shows the time-varying
parameters of the linearized flexibility function.

Figure 4 follows the first scenario without solving an
optimization problem but with a software limitation. It is
seen in the middle panel of this figure that the control signal,
the price signal, is limited between 0 and 1, using a software
limitation. It is observed that bounding the price signal does
not cause instability. It even pushes the state and output of
the linearized flexibility function to the prespecified limit of
0 and 1, as can be seen in the top panel. Also, the demand
follows its reference. The third panel shows the time-varying
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parameters of the linearized flexibility function.
The results of Implementation procedure 1, with optimiza-

tion problem (17) is illustrated in Figure 5. The top panel of
this figure shows the results of the flexibility state, its output,
the baseline signal, and the reference demand. It is seen that
the demand follows the reference demand. The middle panel
shows the price signal. The optimization problem finds the
optimal solution while considering the constraints. The time-
varying parameters of the linearized system are demonstrated
in the bottom panel.

The results of Implementation procedure 2, where the
parameters of the flexibility function are not known, are
illustrated in Figure 6. The top panel of this figure shows
the results of the flexibility state, its output, the baseline
signal, and the reference demand. It is seen that the demand
follows the reference demand. The middle panel shows the
price signal. The optimization problem finds the optimal
solution while considering the constraints. The time-varying
parameters of the linearized system are demonstrated in the
bottom panel.

VII. CONCLUSIONS

An adaptive flexibility function based on an adaptive
model reference controller structure is proposed in this paper.
The method utilizes the linearized price-demand mapping
and generates an adaptive price signal to diminish the differ-
ence between the demand and the reference demand in an
energy system. The proposed method considers price signal
constraints using a projection algorithm. Furthermore, the
method needs neither uncertainty identification nor persis-
tence of excitation assumption. This property along with
the adaptation capability simplifies offering the flexibility
services, e.g., in a plug-and-play manner and without the
need to conduct a manual, customized modeling-and-control
study for each resource separately. Simulation results show
the effectiveness of the proposed method.
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