
Real-time Control of Electric
Autonomous Mobility-on-Demand Systems via Graph Reinforcement Learning

Aaryan Singhal1, Daniele Gammelli1, Justin Luke1, Karthik Gopalakrishnan1, Dominik Helmreich2 and Marco Pavone1

Abstract— Operators of Electric Autonomous Mobility-on-
Demand (E-AMoD) fleets need to make several real-time decisions
such as matching available cars to ride requests, rebalancing idle cars
to areas of high demand, and charging vehicles to ensure sufficient
range. While this problem can be posed as a linear program
that optimizes flows over a space-charge-time graph, the size of
the resulting optimization problem does not allow for real-time
implementation in realistic settings. In this work, we present
the E-AMoD control problem through the lens of reinforcement
learning and propose a graph network-based framework to achieve
drastically improved scalability and superior performance over
heuristics†. Specifically, we adopt a bi-level formulation where we (1)
leverage a graph network-based RL agent to specify a desired next
state in the space-charge graph, and (2) solve more tractable linear
programs to best achieve the desired state while ensuring feasibility.
Experiments using real-world data from San Francisco and New
York City show that our approach achieves up to 89% of the profits
of the theoretically-optimal solution while achieving more than a
100x speedup in computational time. We further highlight promising
zero-shot transfer capabilities of our learned policy on tasks such
as inter-city generalization and service area expansion, thus showing
the utility, scalability, and flexibility of our framework. Finally,
our approach outperforms the best domain-specific heuristics with
comparable runtimes, with an increase in profits by up to 3.2x.

I. INTRODUCTION

Electric Autonomous Mobility-on-Demand (E-AMoD) systems
use electric autonomous vehicles to provide on-demand ride-
hailing services for customers. Operating an E-AMoD fleet in-
volves three operations: matching available cars to customers who
request rides, rebalancing idle cars to regions with high demand,
and assigning cars to charging stations. In realistic settings, E-
AMoD fleets can be centrally controlled and the operator can
coordinate the assignment of vehicles to each of these three tasks
to maximize efficiency, demand satisfaction, and profits.

It is worth emphasizing that these decisions need to be made
in real time, and any offline schedule, even if computed at the
start of a day using historical or predicted data, will generally be
suboptimal [1] due to forecasting errors in traffic demand, vehicle
energy consumption, and road congestion [2]. Thus, we seek
an approach to solve the E-AMoD control problem in real-time,
so that we may be able to compute updated fleet coordination
decisions whenever new information is available to the operator.

1 Stanford University, USA {aaryan04, gammelli, jthluke,
gkarthik, pavone}@stanford.edu

2 Work done while at ETH Zurich, Switzerland hedo-
mini@student.ethz.ch

† The project’s website can be found at: https://github.com/
StanfordASL/graph-rl-for-eamod

Among other approaches, Model Predictive Control (MPC) pro-
vides a framework to make decisions in a receding horizon fashion
by repeatedly solving an optimization problem based on (i) the cur-
rent state of the system and (ii) a forecast of future state elements.
In the context of autonomous mobility-on-demand (AMoD) sys-
tems, receding-horizon control has been used extensively to make
optimal rebalancing decisions [3]. Specifically, prior work has
shown that a network flow model for this problem can be success-
fully scaled for real-time large-scale operations [4]. However, this
approach assumes that all vehicles are indistinguishable from each
other, thereby enabling the operator to aggregate all vehicles and
model their movements as a flow on a network. Electric vehicles
on the other hand are distinguishable based on their current state of
charge, which determines their maximum range. Motivated by this,
Estandia et al. [5] use an augmented network flow formulation for
E-AMoD systems, by including a charge dimension in the resulting
graph (i.e., from a space-time graph to a space-charge-time
graph). However, the computational complexity of the resultant
optimization problem does not allow for real-time implementation,
and previous work has struggled to devise effective real-time
controllers even for coarse representations of space, charge, and
time. For instance, Estandia et al. [5] report that solving the
optimal control problem takes 42 minutes for an E-AMoD system
operating across Orange County, USA over an eight-hour horizon.

In this paper, we propose a strategy to design real-time
controllers for E-AMoD systems through reinforcement learning.
To do so, we present the E-AMoD control problem through the
lens of graph reinforcement learning (graph-RL) [6] and exploit
the main strengths of graph neural networks, reinforcement
learning, and classical operations research tools.

A. Related works

Existing literature on the coordination of E-AMoD systems
heavily relies on solving large-scale optimization problems. Specif-
ically, prior works approach the problem of joint optimization of
charging station siting [7], joint optimization of power flows [5],
and the computation of optimal rebalancing plans [8]. However,
in practice, the adoption of these methods is typically limited
by their computational complexity and is only considered in an
offline setting, thus not immediately applicable within real-time
operations. To improve the scalability of control algorithms for
E-AMoD systems, previous works adopt several learning-based
techniques. For example, Wan et al. [9] consider charge scheduling
for personal electric vehicles. Bogyrbayeva et al. [10] optimize
nightly rebalancing operations of electric vehicles to charging sta-
tions, while Shi et al. [11] propose a decentralized algorithm for the

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 1400

charging-constrained vehicle routing problem. Overall, although
the aforementioned works cover a wide range of algorithms, there
lacks a framework to deal with the joint computation of both
spatial rebalancing and charging decisions within large-scale E-
AMoD systems, which is a key factor in making the optimization
problem prohibitively expensive and a main focus of this work.

Reinforcement learning has also been extensively used to learn
fleet coordination policies that do not account for charging (i.e.,
AMoD systems). For example, Gueriau et al. [12] developed RL-
based decentralized approaches where the action of each vehicle
is determined independently through a Q-learning policy, while
Holler et al. [13] developed a cooperative multi-agent approach for
order dispatching and vehicle rebalancing using Deep Q-Networks
and Proximal Policy Optimization. Of particular relevance to
our work are methods that (i) leverage the graph structure of the
underlying transportation system, and (ii) combine principled
control strategies with learned components in a hierarchical way
[14]–[16]. In this work, we leverage the framework of graph-RL
to include charging within the range of autonomous, real-time
decisions, thus substantially increasing the set of application areas.

B. Our contributions

Contribution #1. We present the first reinforcement learning
agent that jointly learns the charging and rebalancing decisions for
an E-AMoD fleet. This is enabled by two key design choices. First,
we leverage the power of graph neural networks to capture both
spatial and charge information across the system. This is critical
in devising RL agents that can propagate information between
different regions of the transportation network before computing
a centralized decision for the entire fleet. Second, we extend the
framework presented by Gammelli et al. [14] to the E-AMoD
setting and develop an approach that leverages the specific
strengths of direct optimization and reinforcement learning
through a hierarchical formulation, which is advantageous in
learning a policy that is more effective, scalable, and generalizable.

Contribution #2. We provide numerical experiments that
demonstrate how our approach is highly performant, scalable, and
robust to changes in operating conditions. In particular, through
extensive comparisons with both classical optimization-based
approaches and domain-specific heuristics, results highlight how
our approach achieves close-to-optimal performance with drastic
runtime improvements.

Contribution #3. This work highlights how policies learned
through graph-RL exhibit a series of desirable properties of funda-
mental practical importance for any system operator. Specifically,
results show interesting transfer performance of a trained agent in
the context of (i) inter-city generalization (i.e., the agent is trained
on one city and directly applied to another), and (ii) service area
expansion (i.e., the agent is trained on a specific sub-graph and di-
rectly applied to additional areas of the city). We further show how
the transfer capabilities achieved by agents learned through graph-
RL are crucial in enabling learning within large-scale instances.

II. BACKGROUND

In this section, we introduce key terminology and notation in
the context of reinforcement learning (Section II-A) and graph
neural networks for network control (Section II-B).

A. Reinforcement Learning

We refer to a Markov decision process (MDP) as a tuple
M = (S,A,P,r,γ), where S is the state space, A is the action
space, P describes the dynamics of the system through the
conditional probability distribution P(st+1|st,at), r :S×A→R
defines a reward function, and γ∈(0,1] is a scalar discount factor.
From a reinforcement learning perspective, the final goal is to
learn a policy defining a distribution over possible actions given
states, π(at|st) by maximizing the expected cumulative reward
J(π) = Eτ∼pπ(τ)

[∑H
t=0γ

tr(st,at)
]
, where the expectation is

computed under the distribution over trajectories p(τ) induced
by policy π(at|st) and system dynamics P(st+1|st,at).

B. Graph Neural Networks for Network Control

Given a graph G = (V, E), where V = {vi}i=1:Nv and
E={ek}k=1:Ne respectively define the sets of nodes and edges
of G, most current graph neural network models can be seen
as methods attempting to learn a function taking as input (i) a
D-dimensional feature description xi for every node i (typically
summarized in a Nv×D feature matrix X), (ii) a representative
description of the graph structure in matrix form A (typically
in the form of an adjacency matrix), and produce an updated
representation x′

i for all nodes in the graph. As observed
in [6], graph neural networks (GNN) represent an extremely
advantageous choice within network optimization problems,
for three main reasons. First, GNNs are permutation invariant
operators1. This is particularly relevant in the context of graphs,
where nodes do not have a natural ordering and where non-
permutation invariant computations would consider each ordering
as fundamentally different, and thus have been shown to require an
exponential number of input/output training examples before being
able to generalize. Second, GNNs are local operators. This enables
the same neural network architecture to be applied to graphs of
different sizes. Third, GNNs align with the type of computations
required within network optimization problems, which has been
shown to lead to better performance and increased data efficiency.

III. THE E-AMOD CONTROL PROBLEM

In this section, we introduce the charge-expanded network flow
model characterizing the E-AMoD control problem. Towards this
aim, we partition the region of operation for an E-AMoD fleet
(e.g., a city) into a set of discrete non-overlapping regions denoted
A. The time horizon is discretized into a set of discrete intervals
T = {1,2, ··· ,T} of a given length ∆T . We consider a set of
equally spaced discrete charge levels for each vehicle denoted by
C= {1,...,C}, where C is the highest charge level. When a car
travels from region i to region j, it takes lij time steps and loses ηij
units of charge. While charging, a car moves up tc discrete charge
levels per time step. We assume that our E-AMoD fleet has a fixed
set ofN autonomous electric cars and that every region a∈A has a
charging station with a finite number of charging plugs, denoted as
Na

c , with Na
c >0, which is reasonable for most E-AMoD settings.

We denote customer demand from region i∈A to j∈A at time
t∈T as dtij and define the arrival process of passengers for each

1We will refer to a computation as permutation invariant if its output is
independent of the ordering of its inputs.

1401

origin-destination pair as a time-dependent Poisson process that
is independent of the arrival processes of other origin-destination
pairs and the coordination of E-AMoD fleets [17]. We denote the
total demand from region i∈A at time t as dti=

∑
j∈Ad

t
ij. Note

that customers might request a ride within the same spatial region,
i.e., dtii can be non-zero. We assume that a customer that is not
assigned a ride within one time step will leave the system.

We denote the cost for increasing the charge level of a vehicle
by one discrete level at time t to be pte, assumed to be known.
We denote the cost of operating a vehicle from region i∈A to
region j∈A as otij. This cost is a function of the distance traveled,
captures the amortized cost of maintenance, and is assumed to be
given. Finally, the revenue for the operator generated by serving a
passenger traveling from region i to j at time t is denoted by ρtij.

A. The Space-Charge Graph

Having formally defined the relevant notation and assumptions
used in this work, this section describes the graph structure
characterizing the E-AMoD network flow problem (Figure 1).
In this graph, nodes represent a (spatial region, charge level)
tuple and are used to capture the state of a vehicle. Multiple
vehicles may have the same spatial region and charge level. Over
time, vehicles transition from one state to another as they satisfy
passenger demands, perform spatial rebalancing, or get recharged.
At any time, vehicles can transition from one node (i.e., spatial
region and charge state) to another through edges that capture valid
transitions. Formally, we denote the graph as G = (V,E) where
V=A×C is the set of nodes and E={(i,j)⊂V×V} is the set of
edges. We denote an edge from node i to node j as eij. The graph
G is characterized by two types of edges – those representing the
physical movement of vehicles from one region to another, denoted
by Eroad, and those representing the charging of vehicles, denoted
by Echarge. Thus E = Echarge∪Eroad. For any node i ∈ V, we
denote the corresponding spatial region and charge level as ir and
ic, respectively. Using this notation, we define Echarge={eij|ir=
jr and (jc−ic)=ktc for some k∈N}. This set represents all pos-
sible transitions that can happen as a result of charging. Similarly,
we define the edges corresponding to roads as Eroad={eij|jc=
ic−ηij}. For every edge e=(i,j)∈E on the graph, we associate
a time-variant cost ctij to traverse it. For road edges, ctij =oir,jr ,
while for a charging edge e=(i,j)∈Echarge, the cost is ctij=(jc−
ic)p

t
e. Lastly, we define the travel time for all road and charging

edges as τij as τij=lirjr and τij=⌈ (jc−ic)
tc

⌉, respectively.

B. The Optimal Control Problem

The E-AMoD control problem is naturally posed as a network
flow problem. Formally, let xtij be the number of passengers who
started traveling from i ∈ V to j ∈ V at time t ∈ T , and let ytij
be the number of vehicles that started rebalancing or charging
at time t from node i to node j. The objective of the E-AMoD
control problem is to maximize the profits over a pre-specified
time horizon T , and is defined as follows:

max

T∑
t=1

∑
(i,j):eij∈E

[(ρtij−ctij)x
t
ij−ctijy

t
ij] (1a)

s.t.

∑
(i,j)∈Eroad:ir=u,jr=v

xtij≤dtuv ∀i,j∈V,t∈T (1b)

∑
i∈V

(x
t−τij
ij +y

t−τij
ij)=

∑
k∈V

(xtjk+ytjk)∀t∈T ,j∈V (1c)

∑
(i,j):ir=jr=a

τij∑
k=0

yt−k
ij ≤Nt

a ∀a∈A,t∈T (1d)

x0ii=xinit
i ,y0ii=0 ∀i∈V (1e)

xtij≥0 ,ytij≥0, (1f)

where, the objective term (1a) represents the total profit, constraint
(1b) ensures that passenger flow does not exceed demand, (1c)
enforces flow conservation, (1d) ensures that the number of
vehicles charging at any point in time does not exceed the capacity
of that station, and (1e) and (1f) set the initial conditions and
ensure non-negativity of the decision variables, respectively.

Note that the objective in (1a) involves |E|×T decision vari-
ables. Since, the number of edges |E|=O(|V|2), and V=A×C,
the number of decision variables in the optimization problem de-
scribed by Eqn. 1a is O(|A|2|C|2T). Crucially, the rapid growth of
the underlying optimization problem with respect to the spatial res-
olution, charge levels, and planning horizon T results in poor com-
putation performance for real-time applications, as observed in [5].

Our goal is to reduce the complexity of problem (1a)-(1f)
to enable real-time control. To achieve this, we formulate the
problem in Eqn. (1a) as a sequential decision-making problem
[14], [18]. Our hypothesis is that we can express effective
E-AMoD policies as a composition of policies: a higher-level
policy trained through RL to maximize long-term reward, and
a lower-level local approximation of the problem (1a)-(1f) to
compute feasible, fleet-wide decisions. This local correspondence
is central to our formulation: we exploit exact optimization when
it is useful, and otherwise push the complexities of optimizing
for long-term performance to the learned policy. In the next
section, we will present our approach via a tri-level framework,
and discuss specific details about the design of our RL agent.

IV. GRAPH-RL FOR E-AMOD CONTROL

In this section, we introduce the proposed graph-RL framework
for E-AMoD systems. Specifically, we first describe a tri-level
formulation used to approximate the problem (1a)-(1f) (Section
IV-A) together with the definition of a Markov Decision Process
(MDP) within this formulation (Section IV-B). Lastly, we describe
the proposed graph-RL agent (Section IV-C).

A. The Tri-level Framework

Similarly to [18] and [14], we approximate the problem in
Eqn. (1a) through the following three-step decomposition: (i)
derive passenger flows xtij by solving a matching problem, (ii)
compute a desired distribution of idle vehicles across spatial and
charge dimensions through reinforcement learning, and (iii) solve
a minimal cost rebalancing problem to compute the desired flows
ytij that would better achieve the desired distribution from the
previous step (Figure 1). Notice that solving this approximation
drastically reduces the number of decision variables in the
optimization problem. Specifically, rather than solving a single
planning problem with |E|×T decision variables, we now solve

1402

Fig. 1. A visual representation of the tri-level framework for a given time step t. Step 1 (left) involves matching ride requests to cars. Step 2 (center) uses the policy
learned through RL to compute an ideal redistribution of cars over the space-charge graph G, i.e., at. Step 3 (right) computes the spatial rebalancing and charging
flows to achieve (as best as possible) the target distribution given by at.

three simpler problems that do not scale with the length of
the planning horizon T , i.e., characterized by |E|, |V|, and |E|
variables, respectively. Crucially, we propose RL as an appealing
learning paradigm to compensate for the lack of explicit planning
caused by the three-step approximation and learn a control policy
that optimizes long-term reward; in particular, we extend the
framework proposed in [14] to handle space-charge graphs (as
opposed to space-only graphs), developing RL-based approaches
for hierarchical, large-scale network topologies. In what follows,
we introduce the three-step framework in more detail.

Step 1: Passenger Matching. The first step is passenger
matching, wherein the following matching problem is solved to
derive passenger flows:

max
xt
ij≥0

∑
(i,j):eij∈Eroad

(ρtij−ctij)x
t
ij (2a)

s.t.
∑

j:eij∈Eroad

xtij≤nt
init[i] ∀i∈V (2b)

∑
(i,j):eij∈Eroad

ir=a1,jr=a2

xtij≤dta1a2
∀a1,a2∈A, (2c)

where nt
init[i] defines the number of idle vehicles in node i at time

t before matching, constraint (2a) denotes the difference between
the revenue and cost of traversing all the edges, (2b) limits the
maximum flow from each node to the number of available vehicles,
and (2c) ensures that the passenger flow between any two nodes
does not exceed demand. Notice that since the constraint matrix
is totally unimodular, the resulting passenger flows are positive
integers, i.e., xtij∈Z+ if dtij∈Z+, ∀i,j∈V. .

Step 2: Desired Distribution. The second step entails
determining the desired number of idle vehicles nt

target[i] at each
node. Let us denote the number of idle vehicles at node i∈V, after
the matching step as nt

idle[i], i.e., nt
idle[i]=nt

init[i]−
∑

j∈Vx
t
ij. In

this work, we compute nt
target[i] in two steps. First, we determine

a desired distribution of vehicles (i.e., the action for the RL agent)
at = {at[i]}i∈V , where at[i] ∈ [0,1] defines the percentage of
currently available vehicles to be moved to node i at time t, and∑

i∈Vat[i]=1. Second, we use the desired distribution to compute
nt
target[i]=

⌊
at[i]

∑
i∈Vn

t
idle[i]

⌋
as the actual number of vehicles

at each node i. Here, the floor function ⌊·⌋ ensures that the desired
number of vehicles is integer and always available. It is important
to highlight how this action representation is scale-invariant by

construction, as it acts on ratios as opposed to raw vehicle counts:
a strategy that has been shown to lead to increased learning
stability and better generalization [14]. Crucially, the goal of our
formulation is to use reinforcement learning to learn a policy over
desired distributions at that is capable of steering the myopic
behavior of steps 1 and 3 towards long-term optimality.

Step 3: Vehicle Rebalancing. Henceforth, we refer to
“rebalancing” as both spatial rebalancing and charge rebalancing
(i.e., charging) for brevity. In this third step, we use a linear
program to compute the rebalancing flows ytij that (i) achieve
the desired distribution from step 2 in the minimum cost, and (ii)
satisfy domain-specific constraints. Specifically, this is achieved
by solving the following problem:

min
yt
ij≥0

sv≥0

∑
(i,j):eij∈E

ctijy
t
ij+M

∑
v∈V

|sv| (3a)

s.t.
∑
j∈V

ytij≤nt
idle[i] ,∀i∈V (3b)∑

i∈V
(ytij−ytji)+sj

=nt
target[j]−nt

idle[j] ,∀j∈V, (3c)

where Eqn. (3a) represents the rebalancing cost plus a penalty
for deviations from the desired distribution, with sv defined as
a slack variable for vehicle deviation and M as a large penalty
factor, constraint (3b) limits the rebalancing flows from a region
to the vehicles available in that region, and (3c) ensures that the
resulting number of vehicles (the left-hand side) is close to the
desired number of vehicles (the right-hand side).

B. The E-AMoD Markov Decision Process

In this section, we formulate the E-AMoD control problem as
an MDP. In what follows, we define the elements characterizing
the MDP for the E-AMoD control problem.

State space. We define the state of the system st to capture rel-
evant information required to express effective fleet control strate-
gies. To do so, we define the state representation to encode informa-
tion about (i) the topology of the space-charge network through an
adjacency matrix A, and (ii) local information about each node in
the network through a feature matrixX. On one hand, the topology
of the space-charge network is fully characterized by the adjacency
matrix A of graph G, as introduced in Section III-A. On the other,
we choose the feature matrixX to be defined by three main sources
of information. Firstly, we characterize the state of the E-AMoD

1403

system by the current and projected number of idle vehicles across
all nodes, nt

idle[i] for t= t,...,t= t+K,∀i ∈ V. Note that the
projected number of idle vehicles is readily estimated given past
matching and rebalancing actions (i.e., xkij and ykij for all k<t), as
well as travel times τij. Secondly, profit-maximizing control poli-
cies will necessarily depend on information regarding the potential
revenue that can be obtained across different regions. To do so, we
express the potential revenue across all regions i over the next K
time steps as the sum of all revenues from estimated trips origi-
nating from that region:

(∑
j∈Ad̂

t+1
ij ρ̂t+1

ij ,...,
∑

j∈Ad̂
t+K
ij ρ̂t+K

ij

)
,

where d̂t+1
ij and ρ̂t+1

ij are the estimated demand and trip revenue
between regions i and j. Finally, to enable proactive charging
policies, we distinguish between nodes at different charge levels
through the fractional charge level ic

|C| of the node.
Action space. In this work, we consider the problem of learning

a desired distribution of idle vehicles across all nodes in the graph
at ∈ R|V|

≥0. Specifically, we define the action at to describe a
probability distribution over vehicle charge level and location.

Reward. We define the reward function for the MDP such that
the RL agent learns actions that maximize the global objective
described in Equation (1a). To do so, the instantaneous reward
should reflect the revenue from passenger trips as well as the
rebalancing costs associated with fleet management. Specifically,
given trip revenues and costs (i.e., ρtij and ctij) together with the
number of passenger and rebalancing trips (i.e., xtij and ytij) we
define the reward as:

r(st,at)=
∑
i,j

[
(ρtij−ctij)x

t
ij−ctijy

t
ij

]
. (4)

Dynamics. The dynamics characterizing the E-AMoD MDP
describe both the stochastic evolution of the system, as well as how
fleet management decisions influence future state elements, such
as the availability and distribution of idle vehicles. Specifically,
we assume the evolution of travel demand between regions
dtij to be independent of the operator decisions and follows a
time-dependent Poisson process (in our experiments, estimated
from real trip travel data). On the other hand, some of the state
variable’s transitions deterministically depend on the chosen
action. For example, the projected availability nt′

idle[i],∀i∈V,t′>t
is uniquely defined as the sum of the current availability nt

idle[i]
together with the projected number of incoming vehicles at time
t′ (from both passenger and rebalancing trips), minus the vehicles
currently chosen to be rebalanced. Finally, state variables related
to provider information, such as trip price ρtij and cost ctij are
assumed to be exogenous and known (hence, independent from
the actions selected by the operator).

C. Graph-RL Agent

After having introduced the E-AMoD control problem and
the related MDP formulation, we now formally describe the
graph network-based architecture characterizing the proposed
RL agent. In this work, we learn E-AMoD control policies
through the Soft-Actor-Critic (SAC) [19] algorithm and define
the following architectures for policy (i.e., the actor) and value
function estimator (i.e., the critic).

Actor. As described in Section IV-B, the goal of the policy
network is to learn a mapping from the current state of the system

st to a desired distribution of idle vehicles at. We define π(at|st)
as a Dirichlet distribution over nodes in the graph (i.e., at ∼
π(at|st)=Dir(at|αt)), with the policy network parametrizing the
concentration parameters αt∈R|V|

+ . The neural network used in
our implementation consists of one layer of graph convolution
network [20] with skip-connections and ReLU activations, whose
output is then aggregated across neighboring nodes using a
sum-pooling function, and finally passed to three MLP layers of
32 hidden units to produce the Dirichlet concentration parameters.

Critic. The architecture of the critic mostly overlaps with
the one used to define the policy network. The main difference
between the two architectures lies in an additional global
sum-pooling performed on the output of the graph convolution
to compute a single value function estimate for the entire network,
i.e., opposed to the actor that computes an output for every node.

V. EXPERIMENTS

In this section, we present simulation results that demonstrate
the performance of our proposed approach. Specifically, the
goal of our experiments is to answer the following questions:
(1) Can the proposed graph-RL framework learn effective fleet
management strategies in real-world urban mobility scenarios?
(2) Computationally, what are the advantages of graph-RL
approaches compared to traditional optimization-based strategies
and domain-specific heuristics? (3) What are the generalization
capabilities of behavior policies learned through our approach?

A. Simulation Environment and Baselines

We model an E-AMoD system serving passenger travel in San
Francisco and New York City for 12 hours, from 8am-8pm. In San
Francisco, travel demand dtij and travel times lij is based on origin-
destination travel data for all passenger travel for an average week-
day in 2019, provided by StreetLight Data2. We use this data to
calibrate a Poisson process of travel demand, which we use to gen-
erate unseen (but realistic) demand patterns for both training and
test scenarios. In New York City, travel demand and travel times are
based on High Volume For-Hire Vehicles origin-destination data
provided by the New York City Taxi and Limousine Commission3.
Each spatial region is approximately 6 traffic analysis zones (TAZ).
In each experiment, we assume fleet size is 20% of the peak total
travel demand. Additionally, we assume there are a total number
of 50 kW charging stations equal to 20% of the fleet size, which
are distributed uniformly across all spatial regions to determine
Na

c . We model the fleet vehicle based on the Chevrolet Bolt EV,
with 65 kWh and an energy consumption of 0.4037 kWh/mi that
includes a 30% de-rating due to charging losses and autonomous
vehicle auxiliary loads, which we use to determine ηij. Reserving
40% of the vehicle battery capacity for operational uncertainty
in energy consumption, and setting the charge level step size to
be 2 kWh, we result in C =19 charge levels. Setting ∆T =15
minutes, we have tc=6 charge levels. The electricity price pte is
based from Pacific Gas & Electric’s Business Electric Vehicle4

time-of-use energy rates in 2022, which promotes charging when

2https://www.streetlightdata.com/
3https://www.nyc.gov/site/tlc/index.page
4https://www.pge.com/tariffs/assets/pdf/tariffbook/

ELEC_SCHEDS_BEV.pdf

1404

solar generation is most plentiful. Its rates are 0.16872 $/kWh
from 8am-9am and 2pm-4pm, 0.14545 $/kWh from 9am-2pm,
and peak price of 0.38195 $/kWh from 4pm-8pm. The amortized
cost of maintenance oir,jr is calculated using 0.077 $/mi from the
American Automobile Association5. The revenue from serving
passengers ρtij is based on Lyft pricing for the San Francisco Bay
Area6 in 2022, with a base fare and service fee of $4.90, price per
mile of 0.90 $/mi, and price per minute of 0.39 $/min.

In our experiments, we compare the proposed graph-RL
framework with heuristic and MPC-based methods. All three
approaches are targeting to solve the E-AMoD control problem
within a real-time constraint of 10 seconds [21], which may
be demanded by a lower-level vehicle dispatch algorithm. The
heuristic and MPC-based methods are implemented as follows:
Heuristics. We focus on measuring the performance of realistic,
domain-specific fleet management heuristics. This class of
methods also adopts the tri-level framework outlined in IV-A, but
determines the desired distribution in Step 2 heuristically.

First, vehicles are recharged using one of the following methods:
1) Empty-to-full: all vehicles that reach a charge level below

the average trip’s energy consumption are recharged to full.
2) Off-peak Absolute: when electricity price is not at its peak,

all vehicles below 30% charge level are recharged for one
time step (i.e., recharge tc charge levels). During peak price,
vehicles with charge level below the average trip’s energy
consumption are recharged for one time step.

3) Off-peak Relative: equivalent to Off-peak Absolute except
that during off-peaks the lowest 30% of vehicles by charge
level in each region are recharged.

Second, idle vehicles are spatially rebalanced to uniformly dis-
tribute them across all spatial regions. These benchmarks provide
a measure of performance for methods that are computationally
feasible and simplest to implement by real-world operators.
MPC-based. Within this class of methods, we focus on measuring
performance of MPC approaches that serve as state-of-the-art
benchmarks for the E-AMoD control problem.

4) MPC-Oracle: the MPC is based on Eqn (1a) that assumes
perfect foresight information of future user requests for all
time steps. This approach serves as an oracle that provides
a performance upper bound for any fleet management
policy. Notice that MPC-Oracle does not scale well as the
number of regions increases, since solving the optimization
model is extremely computationally expensive.

5) MPC: we relax the assumption of perfect foresight
information in MPC-Oracle. Additionally, in an attempt to
approach the real-time constraint of 10 seconds, the planning
horizon is reduced to three time steps of look-ahead for
scenarios with 5 spatial regions, and a single time step
look-ahead for scenarios with 10, 15, and 20 spatial regions.
This approach is a more realistic optimization-based
benchmark, but might still violate real-time constraints.

In our experiments, we monitor a set of metrics not directly
included in the reward function. Specifically, we report

5https://newsroom.aaa.com/wp-content/uploads/2021/
08/2021-YDC-Brochure-Live.pdf

6https://www.lyft.com/pricing/SFO

performance with respect to (i) Served demand: defined as the
number of completed passenger trips, (ii) Operating cost: defined
as the overall cost induced on the system by non-passenger trips
(i.e., accounting for both charging and spatial rebalancing), and
(iii) Percentage of oracle performance.

B. Learning to Control E-AMoD Fleets

In our first simulation experiment, we study system performance
on both San Francisco and New York scenarios, across increasing
spatial coverage (i.e., from 5 spatial regions to 20). Results in Table
I, Part A show that policies learned through graph-RL achieve, on
average, ≈75% of MPC-Oracle, which assumes perfect foresight
of future demand and unlimited computation time. Table I and
Figure 2 also highlight how the proposed approach is comparable
in performance with the more realistic implementation of MPC,
outperforming it in the SF15, SF20 scenarios and with a slight
loss in performance on NY5, NY10 and SF5, SF10. Crucially,
despite it being outperformed by MPC in some of the above
instances, the graph-RL policy is the only method (together with
the three heuristics) that can successfully satisfy the computation
time constraints: this is of critical importance for the operator, as
it would simply not be able to execute MPC in real-time beyond
5 spatial regions. Thus, results in Table I, Part A and Figure
2 show how graph-RL is able to maintain the performance of
optimization-based methods, while substantially outperforming
heuristics with comparable computation time.
Computational analysis.

After having discussed system performance in the previous ex-
periment, we further study the computational cost of the proposed
graph-RL approach compared to both heuristics and optimization-
based approaches. As shown in Fig 3, we compare the time
necessary to compute a single decision across varying dimensions
of the underlying space-charge graph, ranging from 5 spatial
regions and 19 charge levels up to 20 spatial regions and 19 charge
levels. The results show how policies learned through graph-RL are
approximately on par with heuristics, as opposed to optimization-
based methods that scale super-linearly with the dimensionality
of the problem. In practice, we compare the proposed graph-RL
approach to (i) Off-peak Relative as a representative heuristic, as
all heuristics considered in this work have comparable runtime,
and (ii) MPC-Oracle to highlight the theoretical complexity
of the underlying control problem. Crucially, Fig 3 highlights
the appealing scalability of RL-based methods and shows that
learning-based approaches allow for real-time control by forward-
propagation of the current system state through the learned policy
π(a|s), essentially amortizing the cost of optimization.

C. Transfer and Generalization

Inter-city transfer. To assess the transfer capabilities of graph-RL
within E-AMoD systems, we also study the degree to which a
policy learned on one city can be applied zero-shot (i.e., without
further training) to a different city. Concretely, we do so by
selecting a policy trained in New York and then deploying it in
San Francisco (and vice-versa). As for the rest of our experiments,
we repeat this procedure across varying levels of spatial coverage.
Despite the lower overall performance, results in Table I, Part B
show how policies learned through graph-RL exhibit an interesting

1405

Heuristics RL Optimization
Empty-to-full Off-peak Abs. Off-peak Relative Graph-RL (ours) MPC MPC-Oracle

A

San Francisco

5 32.1% (0.5s) 32.1% (0.5s) 32.2% (0.5s) 87.4% (0.4s) 94.2% (9.7s) 971.7 (1:41min)
10 27.0% (1.6s) 30.5% (1.6s) 30.6% (1.6s) 81.6% (1.9s) 88.4% (15.2s) 2271.2 (6:51min)
15 27.9% (4.4s) 31.9% (4.4s) 32.0% (4.4s) 76.4% (3.5s) 67.7% (33.3s) 3544.8 (16:01min)
20 26.7% (6.5s) 30.7% (6.6s) 30.7% (6.7s) 78.1% (7.8s) 73.6% (58.6s) 5261.9 (28:47min)

New York

5 26.6% (0.4s) 30.5% (0.4s) 30.5% (0.4s) 89.0% (0.5s) 95.1% (9.6s) 84.5 (1:37min)
10 18.8% (1.8s) 22.5% (1.8s) 22.9% (1.8s) 74.3% (1.8s) 81.5% (14.4s) 292.1 (6:19min)
15 18.7% (4.2s) 22.3% (4.2s) 22.3% (4.2s) 63.4% (3.3s) 79.2% (31.6s) 528.6 (14:34min)
20 18.1% (7.5s) 21.7% (7.6s) 21.7% (7.7s) 55.5% (7.39s) 75.0% (54.4s) 930.8 (24:58min)

B

SF → NY

5 - - - 77.0% (0.5s) - -
10 - - - 35.6% (1.8s) - -
15 - - - 54.7% (4.0s) - -
20 - - - 30.3% (7.5s) - -

NY → SF

5 - - - 55.1% (0.5s) - -
10 - - - 48.8% (1.9s) - -
15 - - - 46.1% (4.1s) - -
20 - - - 44.5% (7.6s) - -

C San Francisco
5 → 20 - - - 47.7% (7.7s) - -
10 → 20 - - - 66.7% (7.6s) - -
15 → 20 - - - 74.6% (7.7s) - -

TABLE I
PERCENTAGE OF ORACLE REWARD (PROFIT, THOUSANDS OF DOLLARS) AND COMPUTATION TIME PER DECISION ON TEST SCENARIOS. BLACK-BOLD AND RED

HIGHLIGHT THE BEST-PERFORMING (NON-ORACLE) MODEL AND THE BEST-PERFORMING MODEL THAT SATISFIES REAL-TIME CONSTRAINTS (I.E., 10 SEC.),
RESPECTIVELY. RED-BOLD IS USED IN CASE THE TWO COINCIDE.

degree of portability, substantially outperforming all domain-
specific heuristics without having been explicitly trained for trans-
fer performance, resulting in an average improvement of 1.75x.
Service area expansion. To further study how well policies
learned through graph-RL can generalize to conditions unseen
during training, we now consider the case of a hypothetical service
area expansion. Specifically, we do so by selecting a policy
trained within a specific spatial coverage in San Francisco and
then deploying it within a larger spatial region (e.g., deploying
the policy trained on SF 5 within the SF 20 scenario). As in
the case of inter-city transfer, results in Table I, Part C highlight
how the proposed graph-RL framework exhibits strong intrinsic
generalization capabilities and outperforms all domain-specific
heuristics, with an improvement ranging between 1.5x and 2.5x
of heuristics performance. Moreover, by comparing results on
SF5→SF20 and NY20→SF20, our experiments indicate that
transfer across cities is more challenging than transfer within the
same city: an observation that aligns with intuition, as different
cities are typically characterized by more substantial differences
(e.g., topology, travel times, etc.).

Together, these experiments highlight the benefits of the
inductive biases introduced by graph neural networks and show
huge promise in extending these analyses by explicitly considering
transfer and generalization in the design of neural architectures
and training strategies, e.g., by considering meta-RL [16].
Transfer to enable learning of large-scale instances. Lastly,
we focus on quantifying the potential benefits of the transfer
capabilities of graph-RL agents operating within a single city.
Specifically, in Table I, Part C, and Figure 4, we measure the zero-
shot performance on SF20 of policies trained on smaller scenarios
(i.e., SF5, SF10, SF15) as opposed to the performance of training

Fig. 2. Average served demand and operational cost comparison on San Francisco
and New York (5, 10, 15, 20) scenarios.

Fig. 3. Comparison of computation times between optimization (MPC-oracle,
orange), graph-RL (blue), and heuristics (green).

from scratch a new control policy (i.e., SF20). Results show how
the agents trained on SF5, SF10, and SF15 achieve 61.1%, 85.4%,
and 95.5% of the agent fully trained on SF20, respectively. Not
only does this quantify the benefits of curriculum learning within
fleet control problems, whereby more similar environments allow
for better transfer, but also opens several promising directions for
future work toward the use of agents trained on small, computa-
tionally efficient environments as a starting point for successive
fine-tuning on larger (and computationally intensive) instances.

1406

Fig. 4. Reward curve when training SF20 from scratch compared with zero-shot
performance of SF5, SF10, and SF15 agents when deployed on SF20.

VI. CONCLUSIONS

Existing literature on the coordination of E-AMoD systems
heavily relies on either optimization-based approaches or domain-
specific heuristics. Among these two classes of techniques,
methods belonging to the first have been shown to be extremely
performant, although typically not scalable; on the other hand,
methods belonging to the second make real-time implementation
feasible by sacrificing on performance. In this paper, we present
a graph-RL framework to achieve the best of both worlds: the
scalability of heuristics, while maintaining high performance. We
do so by introducing an RL agent that leverages the benefits of
graph neural networks, reinforcement learning, and optimization
for the real-time scheduling of E-AMoD fleets. Our experiments
operating an E-AMoD fleet in NYC and SF using realistic data
show that graph-RL policies can achieve performance comparable
to the one of (real-time infeasible) optimization-based approaches
while maintaining the scalability of domain-specific heuristics.
Crucially, we show how graph-RL enables reinforcement learning
agents to recover highly flexible, generalizable, and scalable
behavior policies. There are several avenues for future research.
First, to further validate the applicability of our method to real-
world large-scale E-AMoD systems, a lower-level vehicle dispatch
algorithm that is guided by our framework can be integrated with
the simulation environment. Furthermore, the environment can
be reconfigured to reward control policies that ensure periodicity
in the fleet state for daily repeatability of the operations. Second,
investigating ways to explicitly consider transfer in the design of
neural architectures and training strategies, (e.g., meta-learning)
is extremely promising. More broadly, the idea that large-scale
network control problems can be approximated using a sequence
of learning-guided linear approximations that are easier to solve
is very promising and merits further exploration.

ACKNOWLEDGMENT

The authors thank Edward Schmerling, Ruolin Li and James
Harrison for their insightful feedback, and Matteo Zallio for
help in making the figures. The authors thank StreetLight Data,
Inc. for providing travel demand data and the Stanford Research
Computing Center computational resources on the Sherlock cluster.
This research was supported by the National Science Foundation
under the CPS program, Stanford Bits & Watts EV50 Project,
the Center for Automotive Research at Stanford, and the NASA
University Leadership Initiative (grant #80NSSC20M0163). This
article solely reflects the opinions and conclusions of its authors
and not NSF, NASA, or Stanford University.

REFERENCES

[1] B. Turan, R. Pedarsani, and M. Alizadeh, “Dynamic pricing and fleet manage-
ment for electric autonomous mobility on demand systems,” Transportation
Research Part C: Emerging Technologies, vol. 121, p. 102829, 2020.

[2] J. Wen, N. Nassir, and J. Zhao, “Value of demand information in autonomous
mobility-on-demand systems,” Transportation Research Part A: Policy and
Practice, vol. 121, pp. 346–359, 2019.

[3] G. Zardini, N. Lanzetti, M. Pavone, and E. Frazzoli, “Analysis and control
of autonomous mobility-on-demand systems,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 5, pp. 633–658, 2022.

[4] M. Tsao, R. Iglesias, and M. Pavone, “Stochastic model predictive control
for autonomous mobility on demand,” in 2018 21st International Conference
on Intelligent Transportation Systems (ITSC). IEEE, 2018, pp. 3941–3948.

[5] A. Estandia, M. Schiffer, F. Rossi, J. Luke, E. C. Kara, R. Rajagopal,
and M. Pavone, “On the interaction between autonomous mobility on
demand systems and power distribution networks – an optimal power flow
approach,” IEEE Transactions on Control of Network Systems, vol. 8, no. 3,
pp. 1163–1176, 2021. [Online]. Available: https://arxiv.org/abs/1905.00200

[6] D. Gammelli, J. Harrison, K. Yang, M. Pavone, F. Rodrigues, and P. C.
Francisco, “Graph reinforcement learning for network control via bi-level
optimization,” in Int. Conf. on Machine Learning, 2023.

[7] J. Luke, M. Salazar, R. Rajagopal, and M. Pavone, “Joint optimization of
autonomous electric vehicle fleet operations and charging station siting,”
in 2021 IEEE International Intelligent Transportation Systems Conference
(ITSC). IEEE, 2021, pp. 3340–3347.

[8] H. Bang and A. A. Malikopoulos, “Congestion-aware routing, rebalancing,
and charging scheduling for electric autonomous mobility-on-demand
system,” in 2022 American Control Conference (ACC). IEEE, 2022, pp.
3152–3157.

[9] Z. Wan, H. Li, H. He, and D. Prokhorov, “Model-free real-time ev charging
scheduling based on deep reinforcement learning,” IEEE Transactions on
Smart Grid, vol. 10, no. 5, pp. 5246–5257, 2018.

[10] A. Bogyrbayeva, S. Jang, A. Shah, Y. J. Jang, and C. Kwon, “A reinforcement
learning approach for rebalancing electric vehicle sharing systems,” IEEE
Transactions on Intelligent Transportation Systems, 2021.

[11] J. Shi, Y. Gao, W. Wang, N. Yu, and P. A. Ioannou, “Operating electric
vehicle fleet for ride-hailing services with reinforcement learning,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 11, pp.
4822–4834, 2019.

[12] M. Guériau and I. Dusparic, “Samod: Shared autonomous mobility-
on-demand using decentralized reinforcement learning,” in 2018 21st
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2018, pp. 1558–1563.

[13] J. Holler, R. Vuorio, Z. Qin, X. Tang, Y. Jiao, T. Jin, S. Singh, C. Wang, and
J. Ye, “Deep reinforcement learning for multi-driver vehicle dispatching and
repositioning problem,” in IEEE Int. Conf. on Data Mining, 2019.

[14] D. Gammelli, K. Yang, J. Harrison, F. Rodrigues, F. C. Pereira, and
M. Pavone, “Graph neural network reinforcement learning for autonomous
mobility-on-demand systems,” in Proc. IEEE Conf. on Decision and Control,
2021. [Online]. Available: https://arxiv.org/abs/2104.11434

[15] Z. Yu and M. Hu, “Deep reinforcement learning with graph representation
for vehicle repositioning,” IEEE Transactions on Intelligent Transportation
Systems, 2021.

[16] D. Gammelli, K. Yang, J. Harrison, F. Rodrigues, F. Pereira, and
M. Pavone, “Graph meta-reinforcement learning for transferable autonomous
mobility-on-demand,” in ACM Int. Conf. on Knowledge Discovery and
Data Mining, 2022. [Online]. Available: https://arxiv.org/abs/2202.07147

[17] C.-F. Daganzo, “An approximate analytic model of many-to-many demand
responsive transportation systems,” Transportation Research, vol. 12, no. 5,
pp. 325–333, 1978.

[18] C. Fluri, C. Ruch, J. Zilly, J. Hakenberg, and E. Frazzoli, “Learning to
operate a fleet of cars,” in 2019 IEEE Intelligent Transportation Systems
Conference (ITSC). IEEE, 2019, pp. 2292–2298.

[19] H. T., A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,” in
Int. Conf. on Machine Learning, 2018.

[20] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[21] H. Luo, Z. Bao, F. M. Choudhury, and J. S. Culpepper, “Dynamic ridesharing
in peak travel periods,” IEEE Transactions on Knowledge and Data
Engineering, vol. 33, no. 7, pp. 2888–2902, 2019.

1407

