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Abstract— This paper proposes a technology for road-shape
monitoring using crowdsourced vehicle data. The technology
uses vehicle measurements and a dynamics model in a statistical
estimation framework with a kernel model approximating the
road shape. The rationale for considering the vehicle dynamics
for road monitoring is that the same road yields different
measurements/oscillations for different vehicle types. Next, this
paper shows how to use such estimated road shape and vehicle
dynamics for semi-active suspension control with the objective
to improve passenger comfort. Results using the high-fidelity
simulator CarSim show that the proposed technology (i) only
needs a few vehicles for estimating the road shape, (ii) can
improve passenger comfort by semi-active suspension control,
and (iii) is robust to model mismatch indicating the applicability
to a real-world scenario.

I. INTRODUCTION

Road monitoring is required for maintenance, but it is
a time consuming and expensive task. On the other hand,
scores of vehicles traverse a city’s road infrastructure daily.
The scores of vehicles have onboard sensors such as inertial
measurement units (IMUs). Such vehicles are capable of col-
lecting data at no additional expense and can communicate
with each other and the city’s infrastructure wirelessly. While
the data collected from each individual vehicle is expected
to be noisy, crowdsourcing offers a viable alternative to
expensive technology as noise is averaged out as a sufficient
number of vehicles traverses the road.

In this paper, we propose a technology that uses crowd-
sourcing to estimate the road shape using multiple vehicles
that traverse the road. In particular, our technology combines
IMU vehicle measurements with a model of the vehicle
dynamics to infer the road shape. The rationale for leveraging
the vehicle’s dynamics is that while the road shape remains
constant for all vehicles, the measurements collected vary
between different vehicles as function of their velocity and
the type of vehicle. The proposed technology uses a kernel
function to parametrize the road shape and a vehicle dynam-
ics model that relates the road shape to IMU measurements
of the vehicle. Further, the proposed technology formulates
the road estimation as statistical estimation problem, in
which the parameters of the kernel function representing the
road shape are updated episodically after a vehicle traversed
the road segment. Specifically, we formualte the statistical es-
timation problem using a recursive episodical Kalman filter-
based implementation. Next, we leverage the estimated road
shape in combination with a vehicle’s dynamics for semi-
active suspension control with the objective of improving
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passenger comfort. Simulation results show that the road
shape can be estimated with only a few vehicles traversing
the road segment. Further, results using the high-fidelity
simulator CarSim show that the proposed algorithm can deal
with the gap between the control-oriented vehicle dynamics
model and a high-fidelity vehicle model, i.e., sim-to-sim
gap. These results indicate the applicability of the proposed
technology to a real-world vehicle.

A. Related Works

Road-monitoring is a well-studied problem using different
types of approaches. The works [1]–[8] employ smartphones
and their accelerometers to monitor the road conditions,
and a review of some of the approaches using smartphones
is detailed in [9]. The papers [10]–[14] focus on anomaly
detection while [15], [16] take a crowdsourced approach.
Most previous work formulate the road-monitoring problem
as a classification problem with no vehicle dynamics model.
While [17] uses a dynamic model, it is based on a truck-
trailer model with different focus from our paper. Different
from most previous work on road-surface monitoring, we
focus on relatively more obvious surface anomalies such as
bumps and potholes, which impact the ride quality, and we
furthermore show how our method can be applied to semi-
active suspension control. In this paper, we fuse past driving
history with present data to accurately and quickly predict
road conditions and anomalies based on a flexible kernel
representation.

B. Problem Formulation

In this paper, we address the following two problems.
Problem 1: Road Monitoring: We frame the road-

monitoring problem as an episodical estimation task, where
the road shape impacts the vehicle behavior. This is achieved
by leveraging vehicle dynamics in combination with vehicle
measurements to infer the road shape. Further, we leverage
crowdsourced data to estimate the road shape more efficiently
by considering the different dynamics of multiple vehicles
traversing the same road.

Problem 2: Suspension Control: After the road-profile
estimation, we leverage the road shape for semi-active sus-
pension control to improve the comfort of passengers while
driving through the road segment. In this context, semi-active
suspension control selects the best suspension parameters
from a set of possible suspension settings with respect to
some comfort criterion.
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II. PRELIMINARIES

A. Half-Car Model

Let the half-car dynamics model be written as

ẋ(t) = Ax(t) + Fd(t) + Fn(t), (1)

with x = [zc, ϕ, zf , zr, żc, ϕ̇, żf , żr]
T , d = [gf , gr, ġf , ġr]

T ,
and

A =

[
0 I
Ks Cs

]
∈ R8×8, F =

[
0 0
Kt Ct

]
∈ R8×4,

(2)
where zc is the vertical chassis displacement, ϕ is the pitch
angle, and zf and zr are the front and rear suspension dis-
placement, respectively; gf and gr define the road elevation
at the front and real wheel, respectively; Fn(t) defines the
gravity vector; Ks ∈ R4×4 is the suspension stiffness matrix,
Cs ∈ R4×4 is the suspension damping matrix, Kt ∈ R4×2

is the tire stiffness matrix, and Ct ∈ R4×2 is the tire
damping matrix. Further, we discretize the dynamics using
the sampling period δt:

xk+1 = Adxk + Fddk + Fn,k, (3)

with Ad = I +∆tA, Fd = ∆tF , and Fn,k = ∆tFn(t).

B. Kernel Model and Regression

We use a kernel model for learning the road shape as
a flexible function approximator. A kernel relates two data
points, x, x′ ∈ R by k(x, x′) : R×R → R. Throughout, we
use a common choice of kernel, the radial basis function:

k(x, x′) = exp
(
−γ(x− x′)2

)
, (4)

where γ corresponds to the lengthscale. Note that k(x, x′) =
1 if x = x′ and k(x, x′) → 0 for x far away from x′. Next,
let

k(x,X) =
[
k(x, x1) k(x, x2) . . . k(x, xM )

]
∈ R1×M ,

X =
[
x1 x2 . . . xM

]
∈ Rnd×M ,

and

Kxx =


k(x1, x1) k(x1, x2) . . . k(x1, xM )
k(x2, x1) k(x2, x2) . . . k(x2, xM )

...
...

. . .
...

k(xM , x1) k(xM , x2) . . . k(xM , xM )

 .

Given M training data points with input x ∈ Rnd×M and
the corresponding training output Y ∈ RM , we can define a
predictor f(x) : Rnd → R by

f(x) = k(x, x)
(
Kxx + σ2

0I
)−1

Y. (5)

III. ROAD MONITORING

We model the road shape using a kernel function in
Sec. II-B. In this paper, we study a 2D vehicle and road,
i.e., we use the half-car model in Sec. II-A and model the
longitudinal road shape. However, expanding the proposed
technology to a 3D vehicle model and include the lateral

road is straightforward. Hence, the shape representing the
road elevation at a longitudinal position δ(p) is given by

δ(p) = k(p, x)
(
Kxx + σ2

0I
)−1

Y, (6)

where x = [x1, ..., xM ] and Y = [y1, ..., yM ]T relate to
longitudinal positions along the road segment and their asso-
ciated elevation. Note that x is given in this context and does
not change during the road estimation. Hence, we formulate
the road-monitoring problem as a recursive estimation of Y .
As we formulate the problem in an episodical manner, Y is
adapted after each vehicle has traversed the road segment.

Remark 1: Here δ(p) provides a mapping from the posi-
tion on the road to the corresponding displacement values,
e.g., potholes and bumps.

Remark 2: The multiple vehicles traversing the road seg-
ment need not travel at the same velocity. In fact, the
accelerations experienced by the passengers vary greatly
as a function of the vehicle’s velocity. Such variations,
however, are explicitly accounted for by considering the
vehicle dynamics.

As the kernel model is differentiable,

δ̇(p) =
∂δ(p)

∂t
=

∂δ(p)

∂p

∂p

∂t
=

∂δ(p)

∂p
v(t) (7a)

where ∂p
∂t = v(t) and

∂k(x, x′)

∂x
=

∂ exp
(
−γ(x− x′)2

)
∂x

(7b)

= exp
(
−γ(x− x′)2

) ∂(−γ(x− x′)2
)

∂x
(7c)

= −2γ(x− x′) exp(−γ(x− x′)2) (7d)
=: g(x, x′) (7e)

Hence, the road grade δ̇ at position p(t) is given by

δ̇(p(t)) = v(t)g(p(t), x)
(
Kxx + σ2

0I
)−1

Y. (8)

The advantage of using this formulation is that (i) the road
shape and its derivative are parametric functions that are
linear in the unknown parameters Y and (ii) the kernel model
is very flexible in its approximation capabilities.

A. Combining Kernel Road with Half-Car Vehicle Model

Using the kernel model of the road shape, we can express
the dynamical system (3) with

dk =


δ(pk + lf )
δ(pk − lr)

δ̇(pk + lf )

δ̇(pk − lr)

 (9a)

=


k(pk + lf , x)
k(pk − lf , x)
vkg(pk + lf , x)
vkg(pk − lr, x)

(
Kxx + σ2

0I
)−1

Y (9b)

:= G(pk)Y. (9c)

Finally, let zk be the vehicle measurements as a subset of
xk with zk = Cxk.
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Overall, using the half-car model in (3) and the kernel
model in (9),

xk+1 = Adxk + FdG(pk)Y + wk (10a)
zk = Cxk + vk, (10b)

where wk ∼ N (0, Q) and vk ∼ N (0, R) are zero-mean
Gaussian-distributed process and measurement noise, respec-
tively.

B. Episodical Formulation for Road Monitoring

As we formulate the estimation problem as a recursive
episodical task, we use (9) as the basis to develop a stacked
representation, i.e.,

Xτ =

 x0

...
xN−1


τ

= Āτx0,τ + B̄τYτ + Āw
τ Wτ (11a)

Zτ =

 z0
...

zN−1


τ

= C̄τXτ + Vτ (11b)

= C̄τ B̄τYτ + C̄τ Āτx0,τ + C̄τ Ā
w
τ Wτ + Vτ (11c)

:= HτYτ + ντ , (11d)

where τ denotes the episode, i.e., each τ represents a
vehicle traversing the road segment. Here, Wτ ∼ N (0, QW ),
Vτ ∼ N (0, QV ), Āτ , B̄τ , Āw

τ , C̄τ , Hτ = C̄τ B̄τ , and
ντ = C̄τ Āτx0,τ + C̄τ Ā

w
τ Wτ + Vτ , are chosen according

to (11a). Such a stacked formulation is standard in the
predictive control literature.

C. Kalman Filter-based Implementation

We formulate the episodical road-estimation problem as

Yτ+1 = λ · Yτ + ωτ (12a)
Zτ = HτYτ + ντ , (12b)

with ωτ ∼ N (0, Qω) and ντ ∼ N (µν , Rν) from (11d), i.e.,
µν = C̄τ Āτx0,τ and Rµ = (C̄τ Ā

w
τ )QW (C̄τ Ā

w
τ )

T + QV ,
where (12a) defines a prior in the road shape estimation and
(12b) drives the adaptation of the road shape by means of the
measurements taken, i.e., Zτ , and by means of the vehicle
dynamics, i.e., embedded in Hτ . In (12a), λ ∈ (0, 1] defines
a forgetting factor.

Algorithm 1 summarizes the road-monitoring procedure.
In this formulation, we estimate the kernel model parameters
Y that parametrize the differentiable road-shape model δ(p)
from multiple vehicles’ vertical dynamics measurements
using a Kalman filter. This Kalman filter-based estimation is
implemented with episodic updates, i.e., Y is updated with
the batch measurements of each car after traveling the road
segment, instead of at each time step.

Remark 3 (Theoretical Properties): Note that observabil-
ity of the proposed Kalman filter-based implementation de-
pends on the available vehicle measurements as well as on
the type of vehicle. In particular, we can show that a diverse
set of vehicle increases the rank of the observability matrix.

Algorithm 1: Kalman Filter for Episodic Update

Initialize: Ŷ0|0, P0|0
for each τ do

Predict
Ŷτ |τ−1 = λŶτ−1|τ−1

Pτ |τ−1 = λ2Pτ−1|τ−1 +Qω

Update
Kτ = Pτ |τ−1H

T
τ (HτPτ |τ−1H

T
τ +Rν)

−1

Ŷτ |τ = Ŷτ |τ−1 +Kτ (Zτ −Hτ Ŷτ |τ−1)
Pτ |τ = (I −KτHτ )Pτ |τ−1

Moreover, even if the estimation problem is not observable,
it is easy to see that any λ ∈ (0, 1) makes the road-shape
estimation problem detectable. Hence, Y remains bounded
and does not drift.

IV. SEMI-ACTIVE SUSPENSION CONTROL

Next, we show how to use an estimated road for semi-
active suspension control. The approach is again based on
leveraging the dynamics of the vehicle. The idea is to
vary the suspension calibration, i.e., springs and dampers,
to stabilize the vertical oscillation due to the combined
influence of the road and vehicle dynamics.

Mathematically, we formulate the calibration as an op-
timization problem to select the best suspension setting,
e.g., in terms of riding comfort, from a range of choices
according to our estimation of the road profile Y from
Sec. III. The suspension setting is characterized by the
stiffness and damping parameters θ = [kfs, krs, cfs, crs]

T ,
where for each vehicle, we select the best one amongst a
finite set of possible settings Θ. The trial index τ is dropped
in the control formulations for simplicity.

We use a comfort measure l(X), which can include ver-
tical accelerations, pitch rate, pitch angle, or a combination
thereof. Note that the comfort measure l(X) can also include
an uncertainty quantification, which can be used to optimize
w.r.t. worst-case performance or similar robustness measures.
To emphasize dependencies on suspension parameters, we
rewrite Ā, B̄ as Āθ and B̄θ. Hence, the optimization problem
is given by

min
θ,X

l(X) (13a)

s.t. X = Āθx0 + B̄θY (13b)
θ ∈ Θ. (13c)

In practice, (13) can easily be solved by evaluating the
comfort measure l(X) for all possible θ ∈ Θ and choosing
θ⋆ that minimizes l(X).

V. SIMULATION RESULTS

In this section we provide road-shape estimation results
(Sec. V-A) and using Carsim we subsequently assess its
impact on control performance (Sec. V-B).
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TABLE I: Vehicle parameters for the different vehicle types
used to generate the road-shape estimation results.

Description Sedan Pickup Hatchback SUV

mc Chassis mass (kg) 1100 1137.2 400 1225
mf Front wheel mass (kg) 46 28 28 31
mr Rear wheel mass (kg) 46 28 28 31
Iyy Chassis pitch inertia (kg·m2) 2500 2957 375 1700
kfs Front susp. stiffness (N/m) 8000 198000 18000 7000
krs Rear susp. stiffness (N/m) 8400 198000 18000 7000
kft Front tire stiffness (N/m) 10000 2000 6000 6000
krt Rear tire stiffness (N/m) 10000 2000 6000 6000
cfs Front susp. damping (N·s/m) 1000 1000 1000.8 1000.8
crs Rear susp. damping (N·s/m) 1000 1000 1000.8 1000.8
cft Front tire damping (N·s/m) 100 600 300 300
crt Rear tire damping (N·s/m) 100 600 300 300
lf CoM to front susp. (m) 1.4 1.4 1.1 1.33
lr CoM to rear susp. (m) 1.2 2.55 1.25 1.81

A. Road Shape Estimation

We investigate the impact of vehicle types, speeds, and
measurement configuration on the estimation accuracy. In
the simulation setup, the crowdsourced vehicle data originate
from four different vehicle types: sedans, SUVs, pickup
trucks, and hatchbacks. Each type corresponds to a different
set of suspension, tire-stiffness, and damping coefficients.
Table I shows the different sets of parameters.

To estimate the continuous road function δ(p) according
to the kernel model described in Sec. I-B, we need the
hyperparameter γ in the kernel function (4) and the spatial
discretization that characterizes the modeling resolution for
the road function (6). Here, we set γ = 4 and the spatial
resolution to be 10 uniform sampling points per meter on a
100-meter road segment, i.e., x = [0.1, ..., 100] ∈ R1×1000.
Hence, the road parameters Y ∈ R1000 and the kernel matrix
Kxx ∈ R1000×1000. These values are selected to balance
the resolution needed for understanding of the road surface
and computational time, and are design choices that in our
experience do not significantly impact the estimation results.

The parameter vector Y is estimated using Algorithm 1.
Figs. 1 and 2 display qualitative results of a ”bumpy” road
and a sinusoidal road, respectively, where we use the chassis
vertical acceleration (z̈c) and the pitch rate (ϕ̇) of up to
50 vehicles of random types to estimate the two different
road profiles. The black line represents the ground-truth road
elevation as a function of the traveled distance, while the
orange line represents the estimated road profile using to
1, 5, 20, and 50 vehicles, respectively. The shaded region
represents ±1 estimated standard deviation. Clearly, as the
number of vehicles increase, the estimation becomes more
and more accurate and for 50 vehicles (subplot d) the road
profile can be accurately estimated. Note, however, that
for many applications, e.g., suspension control and road-
condition monitoring, the rate of change of the road profile
is of more interest. From Figs. 1 and 2, for the considered
scenario 5 vehicles is sufficient to detect the road bumps.

Overall, the estimation results improve with an increasing
number of vehicles, even when the initial assumption of the
road is random. However, when the road is mostly flat and

(a) 1 iteration

(b) 5 iterations

(c) 20 iterations

(d) 50 iterations
Fig. 1: Estimated road profile using up to 50 vehicles
randomly drawn from a mixed fleet of sedans, SUVs, pickup
trucks, and hatchbacks. Each vehicle travels at a random
speed between 10-40m/s. Although the slope is drifting, the
road bumps can be identified.

occasionally has road bumps (Fig. 1), the KF is unable to
correct the drift in slope, because constant road slopes do
not excite the suspension dynamics, and cannot be measured
by chassis acceleration and pitch rate alone without addi-
tional position measurements (e.g., using a chassis vertical
displacement sensor). Nonetheless, the bumps that contribute
to the suspension response can still be accurately identified.
A continuously varying road shape (e.g., the sinusoidal road
in Fig. 2) excites the system due to a nonzero derivative of
the road shape and the estimation therefore is more accurate.

B. Application to Active Suspension Control

We present the proposed road-profile estimation to assess
its relevance for suspension control. We have a set of differ-
ent suspension parameters. We use the half-car vehicle model
(see Sec. II-A) to estimate the road shape and subsequently

702



(a) 1 iteration

(b) 5 iterations

(c) 20 iterations

(d) 50 iterations
Fig. 2: Estimated road profile using up to 50 vehicles
randomly drawn from a mixed fleet of sedans, SUVs, pickup
trucks and hatchbacks. Each vehicle travels at a random
speed between 10-40m/s. The sine-wave road can be accu-
rately identified.

the vehicle state. Based on the estimates, we solve (13) to
find the best possible parameter vector θ⋆ ∈ Θ.

We use the high-fidelity vehicle dynamics simulator Car-
Sim [18] to validate our approach. The chassis, tire, and
environment models used in CarSim are of substantially
higher fidelity than the half-car model employed in the
proposed control scheme. Hence, being able to execute the
applied algorithms using a simplified control-oriented model
against the high-fidelity simulator indicates the robustness
of the method and suggests the applicability to a physical
vehicle. For reproducibility, we provide the selected modules
and simulation parameters in the Appendix. In the generated
results, the control loop is executing at 10Hz.

Fig. 3 shows a sequence of snapshots from Carsim of the
suspension behavior without (left column) and with (right
column) semi-active suspension control. Starting from a flat

Fig. 3: Carsim results without (left column) and with (right
column) active suspension control by solving (13) based on
the estimated road shape and vehicle states. Active suspen-
sion leads to a smoother ride (see the maximum normal
forces).

road (first row), the vehicle enters a bump (second to fourth
rows) and finally exits the bump (fifth row). The size of the
normal forces on the wheels are reflected by the magnitude
of the arrows for respective wheel. Clearly, judging by
the normal forces the travel comfort is improved for the
maneuver, and the maximum normal forces exerted on the
wheels are decreased as a result of the suspension parameter
adaptation.

Fig. 4 shows the corresponding vertical velocities and
pitch rates. The maximum values of the vertical velocity and
pitch rate, and the corresponding rate of changes, decrease
with the adjusted suspension, indicating a smoother ride.

VI. CONCLUSIONS

This paper proposed a framework for road monitoring
and semi-active suspension control. The proposed framework
combined vehicle measurements and vehicle dynamics in
order to efficiently estimate the shape of the road. The ratio-
nale for leveraging vehicle dynamics is that the road shape
remains constant for all vehicles, however, the accelerations
experiences reflected in the measurements depend on the type
of vehicle and its suspension. The road-estimation problem
was framed as a statistical estimation problem using a re-
cursive implementation. Further, the semi-active suspension
controller uses the vehicle dynamics as well as the estimated
road shape in order to select the suspension calibration
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Fig. 4: Vertical velocities and pitch rates corresponding to the scenario in Fig. 3.

that optimizes a comfort criterion. Simulation results show
that the road shape can be estimated using less than 50
vehicles. Further, results using the high-fidelity simulator
CarSim indicate that the proposed framework is robust to
the differences between the control-oriented vehicle model
and a real vehicle. In particular, after only 10 simulated
vehicles in CarSim, the semi-active suspension controller
reduces accelerations/oscillation of the vehicle due to road
bumps by more than 35%.

APPENDIX: HALF-CAR MODEL

Here, we describe the half-car model in detail, i.e.,
Ks =

−(kfs+krs)
mc

lrkrs−lfkfs

mc

kfs

mc

krs

mc

lrkrs−lfkfs

Iyy

−(l2fkfs+l2rkrs)
Iyy

−lfkfs

Iyy

−lrkrs

Iyy
kfs

mf

lfkfs

mf

−(kfs+kft)
mf

0
krs

mr

−lrkrs

mr
0 −(krs+krt)

mr

 ,

Cs =
−(cfs+crs)

mc

lrcrs−lf cfs

mc

cfs

mc

crs
mc

lrcrs−lf cfs

Iyy

−(l2f cfs+l2rcrs)
Iyy

−lf cfs

Iyy

−lrcrs
Iyy

cfs

mf

lf cfs

mf

−(cfs+cft)
mf

0
crs
mr

−lrcrs
mr

0 −(crs+crt)
mr

 ,

and

Kt =


0 0
0 0
kft

mf
0

0 krt

mr

 , Ct =


0 0
0 0
cft

mf
0

0 crt
mr

 .
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