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Abstract— The integration of Automated Vehicles (AVs)
into traffic flow holds the potential to significantly improve
traffic congestion by enabling AVs to function as actuators
within the flow. This paper introduces an adaptive speed
controller tailored for scenarios of mixed autonomy, where
AVs interact with human-driven vehicles. We model the
traffic dynamics using a system of strongly coupled Partial
and Ordinary Differential Equations (PDE-ODE), with the
PDE capturing the general flow of human-driven traffic
and the ODE characterizing the trajectory of the AVs.
A speed policy for AVs is derived using a Reinforcement
Learning (RL) algorithm structured within an Actor-Critic
(AC) framework. This algorithm interacts with the PDE-
ODE model to optimize the AV control policy. Numerical
simulations are presented to demonstrate the controller’s
impact on traffic patterns, showing the potential of AVs to
improve traffic flow and reduce congestion.

I. INTRODUCTION

The emergence of technological advances in trans-
portation systems holds the promise of improving traffic
congestion and reducing fuel/energy consumption and
consequently reducing pollution. In recent years, re-
search has focused on the use of Autonomous Vehicles
(AVs) in traffic flow as controllers.

Some of the works in the control framework include
[19], [14], in the machine learning framework [7] and
real world experiments [18]. In Liard et al. [9] the AVs’
adaptive speed is cast as the solution to an optimal
control problem with the objective of minimizing fuel
consumption. They show the existence of a solution
to the optimal control problem. All these works show
that Lagrangian control is a viable alternative to the
classical approach to traffic control involving Variable
Speed Limit (VSL) [5], [2], without requiring dedicated
infrastructure.

More recently, Reinforcement Learning (RL) has
emerged as a powerful tool for optimizing decision-
making processes in complex, dynamic environments.
In the context of traffic control, RL algorithms have
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Fig. 1: Illustration of the FD and the locations of ρ̌(V )
and ρ̂(V ) for each V ∈ [0,Vmax]. The solutions above the
line Fα(V )+V ρ do not satisfy flux constraint (1c).

been applied to a variety of problems, ranging from
signal control to route planning. Few works have focused
on the control of AVs through RL. Krauss et al. [6]
were among the first to explore the use of RL for
controlling AVs, where they applied a microscopic traffic
flow model to train vehicles to optimize their speed
profiles. More recently, Shalev-Shwartz et al. [17] pro-
posed a safe, multi-agent RL framework for autonomous
driving, which not only learns efficient driving policies
but also ensures safety constraints are met. Wu et al.
[20] introduced a computational framework for deep RL
and control experiments for traffic optimization, which
includes AVs as part of the traffic flow. Their work
demonstrates the potential of RL to reduce congestion
and improve traffic efficiency by controlling a small
fraction of the vehicles on the road.

Contribution. In this paper, we focus on employing
an RL method to control AVs immersed in bulk hu-
man traffic to regulate congestion. The goal is to use
autonomous vehicles as actuators in a PDE-ODE model
framework where the bulk flow of the traffic is captured
by PDE and an AV trajectory is represented by an ODE.
In this paper, in particular, we show that an improvement
in traffic metrics, such as minimum flow rate and average
velocity of the traffic, can be achieved by designing
an RL algorithm such that the corresponding reward
function is updated in interaction with the PDE-ODE
model.
The paper organization is as follows: Section II defines
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the problem and demonstrates how to find solutions
to the PDE-ODE problem. In addition, in this section,
we will discuss some of the analytical results from
the control theory which will be used later to show
the validity of our proposed method. Section III details
the proposed controller and the connection with PDE-
ODE will be sketched. Then, numerical results will
be elaborated in Section IV. We finalize the paper by
discussing the results and possible extensions in Section
V.

II. MATHEMATICAL MODEL

In this paper, we consider a PDE-ODE model of the
form 

ρt +
∂

∂x
[ f (ρ)] = 0 (1a)

ρ(0,x) = ρ◦(x) (1b)
f (ρ(t,yi(t))− ẏi(t)ρ(t,yi(t))≤ Fα(ẏi(t)) (1c)
ẏi(t) = min{Vi(t),v(ρ(t,yi(t)+))} (1d)
yi(0) = yi,◦. (1e)

where, f (ρ) = ρv(ρ) is the flux function, v(ρ) =

Vmax

(
1− ρ

ρmax

)
is the average traffic velocity, Vmax the

maximum velocity, ρ is the average traffic density, ρmax
is the maximum density, and t 7→ Vi(t) denotes the
maximum desired speed of the i-th AV. Equations (1a)
and (1b) describe the evolution in time of the traffic
density (also known as the LWR model, [12], [15]) and
Equations (1d) and (1e) describe the AV dynamics. Here,
ρ(t,y(t)+)

def
= limx↘y(t) ρ(t,x) states that the velocity is

only influenced by the downstream density. Finally, the
inequality (1c) captures the decrease in the flux in the
Lagrangian coordinates by a factor α ∈ (0,1) as a result
of slow-moving AV; see [1], [10], [13] for more details.
We define,

Fα(ẏi)
def
= max

ρ∈[0,ρmax]
( f (ρ)− ẏiρ). (1)

The generalization of the Cauchy problem (1a)-(1e) to
the case of variable speed limit and space dependent flux
has been studied in [13] for the existence of weak so-
lution. In this paper for simplicity, we consider a single
AV and Vi =V . It should be noted the generalization of
the results to several AVs is possible, see for example
[3], [4]. For each fixed V ∈ [0,Vmax] we define ρ̌(V )
and ρ̂(V ) as the intersection points of Fα(V )+ρV with
the fundamental diagram, such that ρ̌(V ) < ρ̂(V ); see
Figure 1.

Theorem 2.1: Let ρ◦ ∈ BV(R; [0,ρmax]), where BV
represents the space of bounded variations. Then, the
Cauchy problem (1a)-(1e) has a weak entropy solution

Fig. 2: Control loop of the proposed RL-based Adaptive
Controller.

(ρ,y) ∈ C(R+;L1 ∩BV(R; [0,ρmax]))×W 1,1
loc (R+;R) in

Kruzkov sense [8].
The main idea of the proof is similar to the classical
proof through the wavefront tracking scheme and by
defining approximate solution (ρ(n),yn) and then letting
n → ∞. However, in addition to such approximation, in
this theorem the function V will also be approximated by
a piecewise constant function. The proof of this theorem
as well as the weak entropy definition for this problem
can be found in [3] for the single AV and in [11], [9]
for multiple AVs.

III. CONTROLLER DESIGN

In this paper, we determine the control V using
the reinforcement learning method. We construct an
adaptive controller based on a PDE-ODE model with
the RL framework. The RL algorithm determines an
optimal control policy that adjusts the AVs speeds in
real-time, with the objective of optimizing traffic flow
with respect to predefined metrics (see (2) and (3));
Figure 2 illustrates the general structure of this paper.

A. Markov Decision Process Formulation

Theorem 2.1 proves the existence of the solution
to the PDE-ODE problem (1a)-(1e) for any generic
control V . In fact, [3] proved the existence of open-
loop controls with bounded variations and later, in [11]
and [9] the existence of an optimal solution (even if
may not be unique) was proven for a specific choice of
cost functional corresponding to the fuel consumption.
To frame our control problem within the RL paradigm,
we define a Markov Decision Process (MDP). In the
implementation of the RL scheme, we will discretize the
[0,T ]× [0,L] space both for the MDP as well as for the
numerical scheme of the PDE-ODE problem presented
in Section IV. As a rule of thumb, the discretization
of the space should ensure that the total cell volume
is not higher than the square of the maximum hidden
state to ensure convergence and to elevate the curse of
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dimensionality. However, to explain the RL scheme in
a more general setting, we will keep the notations in
continuous state space for the rest of this section.
State Space: The state space for any fixed time t̂ ∈ [0,T ]
is defined as O(t̂) def

= {ρ(t̂,x) : x ∈ [0,L]}.
Action Space: The actions for each fixed time t̂ are the
admissible set A (t̂) def

= [0,Vmax] that can be assigned to
the AV at any time step t̂. In other words, at a fixed time
t̂, the piecewise constant control V (t̂) ∈ A (t̂).
Reward Function: The reward function r is a composite
measure that includes the Minimum Flux, the instant
speed of the AVs, and the minimum deviation of global
speed across the traffic flow. Mathematically, for any
(o(t),a(t)) ∈ O(t)×A (t), the reward function r(t) =
r(o(t),a(t)) is defined by

r(t) def
= w1Φ(t)+w2V (t)−w3TV

[0,L]
(v(t, ·)) (2)

where for any t ∈ [0,T ]

Φ(t) def
= min{ f (ρ(t,x)) : x ∈ [0,L]}

which is the minimum of the flux function, V (t) is the
AV speed at time t, and TV

Ω

(F(·)) is the total variation
of a function F over a set Ω. In fact, the last term implies
the tendency to define the sequence of controls with
minimum total variation as this will contribute to the
stability of the numerical scheme for solving the PDE-
ODE problem. Here, wi for i = 1,2,3 are corresponding
weights.

In general, the objective of the RL agent is to update
a policy π(a(t) | o(t)) such that

π
∗ = arg max

π

Eτ∼Pπ
[R(τ)] . (3)

Here, Pπ(o(t),a(t)) is the state and state-action
marginals of the trajectory distribution that is induced
by the policy π(a(t) | o(t)). The MDP trajectory and its
corresponding return function are defined by

τ
def
= {(o(t),a(t)) ∈ O(t)×A (t)|t ∈ [0,T ]} ,

and
R(τ)

def
= ∑

t∈[0,T ]
r(o(t),a(t)),

respectively.

B. Policy Parameter Update
The RL policy parameters are updated through inter-

actions with the PDE-ODE model. At each time t, the
agent observes ρ(t,x) ∈ O(t), takes an action V (t) ∈
A (t) with respect to the current policy π which follows
by the reward R(τ).

The target optimal policy π∗ in this paper is adapted as
πθ , a parameterized policy defined by a set of parameters
θ , and the update rule is derived from the policy gradient
method. In particular, the update at each iteration k+1
can be expressed as:

θk+1 = θk +ηactor∇θ J(θk), (4)

where ηactor is the learning rate and J(θ) def
=

Eτ∼πθ
[R(τ)], i.e., the expected return when following

policy πθ . The gradient of the performance, ∇θ J(θ),
is estimated using the Actor-Critic approach, where the
’Actor’ updates the policy in the direction of higher
reward, and the ’Critic’ estimates the value function,
which is used to reduce the variance of the gradient
estimate.

The Actor-Critic algorithm can be further detailed as
follows:
Actor Update: The policy parameters are updated by
taking steps in the direction of the gradient of the
log-probability of the taken actions, weighted by the
advantage function A(t), which indicates how much
better an action is compared to the average:

θk+1 = θk +ηactorE [∇θ logπθ (V (t)|ρ(t,x))A(t)] . (5)

Critic Update: The value function parameters φ are
updated on a predefined collection T = {s◦, · · · ,sM} of
times to minimize the difference between the predicted
value and the actual return. More precisely, for any t̂ ∈
T , the parameter updates are defined as:

φk+1 = φk −ηcritic∇φ (Vφ (O(t̂))−R(τ))2, (6)

where ηcritic is the learning rate for the Critic, and Vφ is
the value function estimating the expected return given
the state O(·).

By iteratively applying these updates, the RL agent
refines its policy towards one that can effectively control
the AVs to achieve the desired traffic flow characteristics.

IV. NUMERICAL RESULTS

To assess the efficacy of the adaptive speed controller
for AVs in mixed autonomy traffic, we conducted a se-
ries of numerical experiments. These experiments were
designed to emulate realistic traffic congestion scenarios,
allowing us to evaluate the performance of the proposed
method under various traffic conditions. The scenarios
were constructed to reflect common congestion patterns
observed in highway traffic, including peak-hour traffic
flow, incidents-induced congestion, and congestion trig-
gered by variable demand levels.

The performance of the adaptive speed controller
was quantified using three primary metrics, which also
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served as the reward function for the reinforcement
learning (RL) agent during training. These metrics are
critical for understanding the impact of AVs on traffic
dynamics and for evaluating the benefits of the proposed
control strategy. Below we describe each metric in detail
and present the results obtained from the numerical
experiments.

Minimum Flux: The minimum flux metric measures
the real-time lowest rate of traffic flow during the
simulation period. This metric is indicative of the system
ability to maintain traffic movement and avoid traffic
jams, which are often the most critical periods during
congestion. A higher minimum flux value suggests that
the system is more effective at preventing severe con-
gestion and ensuring smoother traffic flow.

In our simulations, we observed that the adaptive
speed controller was able to improve the minimum flux
by 15% compared to the baseline scenario (without AV
control). This improvement demonstrates the capability
to mitigate the formation of traffic bottlenecks and
maintain a higher rate of flow even under heavy traffic
conditions.

Instant Speed: The current speed metric represents
the average speed of the controlled AV (ego speed) and
consequently the average speed of all vehicles in the
upstream traffic (global speed). This metric provides
insight into the energy efficiency of the traffic system
and the comfort of the driving experience.

Our results indicate that the average ego speed de-
creased by 27%, while the average global speed saw
an enhancement of 17% with the implementation of
the adaptive speed controller, suggesting that the AV
facilitated a faster average speed for the overall human-
driven vehicles.

Total Variation of Traffic Speed: This metric mea-
sures the variability of speeds across the traffic. Lower
speed deviation is generally associated with more stable
and consistent traffic flow, which can lead to reduced
fuel consumption and lower emissions.

The adaptive speed controller achieved a 35% reduc-
tion in speed deviation, indicating a more uniform traffic
flow. This reduction in speed variability can be attributed
to the controller’s ability to adapt to changing traffic
conditions and to modulate the speed of AV to prevent
shockwave formation in the traffic stream.

To quantify the impact of AVs acting as adaptive
controllers in a mixed traffic environment, we employed
the Proximal Policy Optimization (PPO)[16] algorithm,
which introduces a novel objective function that em-
ploys a surrogate maximization problem with clipped
probability ratios, effectively balancing the exploration
of new strategies against the exploitation of known

Fig. 3: Benchmark scenario: Stop and go waves.

beneficial actions. This mechanism ensures that updates
to the policy parameters are both substantial and sta-
ble, preventing detrimental large shifts that could arise
from highly advantageous outlier actions. A shockwave
scenario, as shown in Figure 3, was constructed as
the testing benchmark. The learning curve depicted in
Figure 4 illustrates the progression of the PPO algo-
rithm performance, highlighting a 16% improvement
in normalized reward, which underscores the algorithm
capability to iteratively refine the AV control strategies
for improved traffic management. A comparative anal-
ysis of the proposed system was conducted against the
benchmark scenarios under various initial conditions. A
comprehensive comparison of numerical results is shown
in Table I.

The series of time-space diagrams from Figure 5
to Figure 7 elucidate the impact of varying reward
weight configurations on the traffic flow, demonstrat-
ing the flexibility of the AV adaptive control system.
In Figure 5, we observe the AV ability to create a
low-density area downstream, effectively dissipating the
backward propagation of a shockwave, under a balanced
reward structure. Altering the reward weights to favor
flux improvement, as shown in Figure 6, results in a
distinctive pattern of speed oscillations, especially as the
AV navigates through areas of rarefaction.

Figure 7 presents a scenario where the reward system
is adjusted to minimize speed deviations, leading to a
more uniform traffic flow. The AV adopts a strategy
that shuns abrupt speed changes, promoting a consistent
traffic density and reducing the likelihood of shock-
wave formation. Conversely, a reward configuration that
prioritizes the AV speed is investigated, which, while
still capable of disrupting shockwave continuity through
the creation of low-density zones, also introduces new
disturbances in the traffic pattern due to the AV sudden
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Fig. 4: Learning curve of the PPO algorithm. 16% of
normalized reward improvement observed in evaluation.

Fig. 5: The reward weights of the model are w1,w2,w3 =
0.2,0.3,0.5. The controlled vehicle tends to create the
low-density area to neutralize the backward propagation
of the shockwave.

speed variations.
These remarks serve to highlight the nuanced relation-
ship between the chosen reward configurations and the
resulting traffic flow dynamics. They provide a com-
pelling demonstration of how reinforcement learning
can be harnessed to develop control policies for AVs,
enabling them to adapt to a range of traffic conditions
and optimization goals. See also Figure 8 for some
highlights on the connection between the oscillation in
the optimal solution and the random nature of the RL
policy.

TABLE I: Numerical Simulation Results

[w1,w2,w3] Avg. Flux Ego Speed Avg. Speed Avg. Deviation

No Control 0.2055 0.3318 0.3318 0.1220
[0.2,0.5,0.3] 0.2381 0.2440 0.3912 0.0429
[0.2,0.3,0.5] 0.2433 0.2679 0.4183 0.0582
[0.1,0,0.9] 0.2346 0.2105 0.3714 0.0317
[0.9,0,0.1] 0.1855 0.2982 0.2461 0.0952

Fig. 6: The reward weights are adjusted to w1,w2,w3 =
0.2,0.5,0.3 to emphasize the flux improvement. The major
difference could be observed when the controlled AV driving
through the rare fraction, where more oscillation of speed are
observed behind the controlled AV.

Fig. 7: The reward weights are adjusted to w1,w2,w3 =
0.1,0,0.9. A more smoothed traffic flow is obtained by using
the deviation-emphasized reward. The AV tends to avoid
drastic speed changes to achieve a homogeneous traffic flow
after the shockwave.

Fig. 8: The bottleneck scenario controlled by: (a) PPO-
trained stochastic policy; (b) Deterministic policy using the
mean of the distribution as the action. By comparing the two
policies, we note that the oscillation in the speed profile can be
attributed to the stochastic nature of RL output; i.e., removing
the uncertainty eliminates the oscillations.
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V. CONCLUSION

This paper has introduced an innovative approach
to traffic control by leveraging the capabilities of au-
tonomous vehicles (AVs) as dynamic actuators within
mixed traffic flows. By employing a mathematical
framework that combines PDE and ODE, we have
modeled the dynamics of traffic flow and the influence
of AVs therein. The core of our methodology is a
Reinforcement Learning (RL) algorithm, specifically de-
signed to adaptively adjust the speed of AVs to optimize
traffic conditions.

Our results demonstrate that the proposed RL-based
adaptive speed controller can effectively mitigate traffic
congestion by creating and manipulating low-density
areas in the traffic flow, which in turn neutralizes shock-
wave propagation. Through numerical simulations, we
have shown that the controller can significantly improve
traffic metrics such as flux, average speed, and speed
deviation. The versatility of the controller was further
highlighted by its performance under various reward
structures, which allowed for a tailored approach to
either collective traffic flow optimization or individual
AV performance.

The implications of this research are twofold. Firstly,
it provides a practical framework for the deployment
of AVs as a means to enhance traffic efficiency, which
could be a pivotal step towards the realization of smart
transportation systems. Secondly, it contributes to the
theoretical understanding of traffic dynamics and control
in the era of autonomous driving technology.

Future work will focus on expanding the scalability of
the control method to larger traffic networks, exploring
the impact of different levels of AV penetration in
traffic, and integrating real-world traffic data to further
refine the model. We will also aim to integrate explicit
safety protocols into the adaptive speed controller. This
will include measures such as safe distance keeping,
emergency maneuver support, and the prediction of
human driver behaviors to ensure a traffic environment
that is not only efficient but also maximally safe for
all participants. Additionally, we aim to investigate the
socio-economic effects of implementing such AV-based
traffic control systems, considering factors such as user
acceptance, policy implications, and environmental im-
pact.
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