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Abstract— This paper studies the joint localization and clock
synchronization problem in a time-of-arrival-based sensor
network employing joint rigidity theory. First, we study the
topological conditions and prior information requirements for
uniquely determining the network position and clock parameters.
Second, we propose a distributed algorithm for the joint
localization and clock synchronization problem and discuss
the approaches for algorithm initialization. Finally, we analyze
the poor conditioning of the problem and propose two possible
methods that result in better conditioning as well as maintaining
the distributed manner.

I. INTRODUCTION

Localization and clock synchronization are two critical
aspects of self-organizing location-aware wireless sensor
networks. The network localization problem determines the
position of sensors in the network, which is highly desirable in
a variety of applications relating to environmental monitoring
and surveillance [1]. The network clock synchronization
problem calibrates the drift between the independent clock
of each sensor in the network, enabling communication
coordination and distributed data fusion [2]. Distributed
methods for these two problems offer advantages in terms
of fault tolerance and network scalability, which have been
separately studied in the literature [3]–[5]. The distributed
localization algorithm estimates the sensor positions by
using knowledge of the absolute positions of a limited
number of sensors (called anchors) and distance or bearing
measurements between network connected sensors [3], [4].
The distributed clock synchronization algorithm estimates the
clock parameters using a consensus-based method [5].

The position and clock parameters are tightly coupled
in time-of-arrival (TOA) based ranging methods, where the
distance is calculated from the time-of-flight as the signal
travels with the speed of light. This coupled relationship
has attracted research interest in the joint localization and
clock synchronization problem [6]–[11]. This problem aims
to estimate the position and clock parameters in the network
simultaneously. Two-step methods are traditionally used,
performing clock synchronization first to provide inter-
sensor distance estimates for the subsequent localization
[6], [7]. Such two-step methods have reduced accuracy as
strict coupling between the position and clock parameters
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is not enforced. Centralized methods have been proposed
for simultaneously solving the problems in one step [8],
[9], which only locate and synchronize one node in the
network. Distributed methods have been studied based on
the probabilistic model between sensor node pairs [10], [11],
where the network topologies are not fully leveraged. Joint
rigidity theory proposed in [12] argues that, as long as specific
topological conditions are satisfied, the position and clock
parameters in a wireless sensor network can be solved up
to some trivial variations based on only one round of TOA
measurements. Joint rigidity theory elaborates on the impact
of network topology in determining the position and clock
parameters in the network, providing an opportunity to apply
existing rigidity-related tools in TOA-based joint localization
and clock synchronization.

In this paper, the joint localization and clock synchro-
nization problem is formulated as an optimization problem.
First, we study the condition for a unique local solution
to the optimization problem based on joint rigidity theory.
Such a condition indicates the requirements for uniquely
determining the sensor position and clock parameters in the
network. Second, we propose a distributed gradient-descent
algorithm that exhibits local convergence. An initialization
method is proposed to overcome the difficulty in determining
the initial estimate of clock parameters. Finally, we analyze
the poor conditioning of the optimization problem and discuss
two possible methods that result in better conditioning while
maintaining the distributed property of the algorithm.

The paper is structured as follows. Section II reviews joint
rigidity theory. Section III formulates the localization and
clock synchronization problem and studies the condition for a
unique solution. Section IV proposes a distributed algorithm
and an initialization method for local convergence. Section V
analyzes the ill-conditioning of the problem and proposes two
possible solutions. Simulation examples are also provided.
Section VI concludes the paper and discusses the future work.

Notation: The vectors 0 and 1n denote the vector of all
zero entries and the n × 1 vector of all ones, respectively.
The identity matrix is denoted as In ∈ Rn×n. Let ∥·∥ be the
Euclidean norm of a vector or the 2-norm of a matrix. The
closed ball of radius r > 0 centered at a vector x is denoted
by Br[x]. Consider matrices A,B ∈ Rp×q . The rank and null
space of A are denoted by rank(A) and Null(A), respectively.
The minimum and maximum eigenvalue of a symmetric
matrix A is denoted as λmin(A) and λmax(A), respectively.
The Kronecker product of A and B is written as A⊗B, and
diag{A,B} denotes a diagonal block matrix whose diagonal
blocks are A and B. An elemental rotation in d-dimensional
space is a rotation about the (d− 2)-dimensional subspace
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containing a set of (d−2) vectors in the standard basis. Matrix
J i
d denotes the infinitesimal generator of the ith elemental

rotation in d-dimensional space, where i ∈ {1, 2, ..., d(d −
1)/2}. For example, for d = 2 and d = 3,

J1
2 =

[
0 1
−1 0

]
,

J1
3 =

[
0 0 0
0 0 −1
0 1 0

]
, J2

3 =

[
0 0 1
0 0 0
−1 0 0

]
, J3

3 =

[
0 −1 0
1 0 0
0 0 0

]

II. JOINT RIGIDITY THEORY

Joint rigidity theory [12] studies the topological conditions
under which a wireless sensor network is localizable and
clock synchronizable up to some trivial variations based on
one round of TOA timestamps. In this section, we review the
concept of infinitesimal joint rigidity and how it is determined
in wireless sensor networks.

A wireless sensor network is termed as a TOA-based sensor
network if its sensors can measure high-precision timestamps
for signal transmission and reception. One example is
the ultrawideband sensor network [13], which is widely
considered in joint localization and clock synchronization
problems. Consider a TOA-based sensor network where every
sensor node has its own position and an independent clock.
For a signal sending from node i to node j, the sending and
receiving timestamps at their local time frames are denoted
by T i

(i,j) and T j
(i,j), respectively. The position of node i is

denoted by pi ∈ Rd. The clock of node i is characterized
by two constant clock parameters, clock skew wi and clock
offset ϕi. The clock offset and clock skew correspond to the
node’s time difference and frequency difference, respectively,
compared to a global clock. The clock parameters follow the
first-order clock model, ti = wit+ ϕi, where t is the global
reference time and ti is the local time at node i. For a sensor
network with n nodes deployed in d-dimensional space, we
denote a position configuration p = [pT1 , ..., p

T
n ]

T ∈ Rdn and
a clock configuration φ = [φT

1 , ..., φ
T
n ]

T ∈ R2n with φi =
[αi, βi]

T , where αi = w−1
i ∈ R+ and βi = −w−1

i ϕi ∈ R.
Thus, t = αiti + βi. For brevity, we refer to αi and βi as
simply the clock skew and clock offset, respectively.

The topology of a TOA-based sensor network can be
represented by a directed graph D = (V, E), where the
vertex set V represent the sensor nodes and the directed
edge set E represents a signal transmission from its tail node
(where the arrow starts) to its head node. Suppose that the
cardinality |V| = n and |E| = m. A TOA-based sensor
network can be represented by a position-clock framework in
Rd+2, denoted by (D, σ), where σ = [pT , φT ]T ∈ Rn(d+2)

is the position-clock configuration of the network. Consider
a signal transmitted from one node to the other, the distance
between the node pair equals the product of the speed of
light and the time of flight. Thus, a position-clock framework
satisfies the following constraint for every edge (i, j) ∈ E ,

∥pi − pj∥ − c(αjT
j
(i,j) + βj − αiT

i
(i,j) − βi) = 0, (1)

where c is the speed of light. Note that the timestamps are
measured in the given framework (D, σ), where the sending
timestamps T i

(i,j) are typically user-defined.

Given a position-clock framework (D, σ) and its TOA
timestamp measurements, we consider a variable σ̂ =
[p̂T , φ̂T ]T and define the following function based on (1),

fk(σ̂) = ∥p̂i − p̂j∥ − c(α̂jT
j
(i,j) + β̂j − α̂iT

i
(i,j) − β̂i), (2)

where k represents the node pair (i, j) ∈ E for some edge
ordering k ∈ {1, ...,m}, denoted as k∼(i, j) ∈ E . Define
the TOA constraint function F (σ̂) = [f1(σ̂), ..., fm(σ̂)]T ∈
Rm. Thus, we have F (σ) = 0.

The joint rigidity matrix is defined as

R(σ̂) =
∂F (σ̂)

∂σ̂
∈ Rm×n(d+2). (3)

Due to the term ∥p̂i − p̂j∥ in (2), the domain of R(σ̂) does
not include the points with p̂i = p̂j for all (i, j) ∈ E . Such a
case corresponds to collocated sensors, which is non-generic
in sensor networks. The definition here slightly differs from
the definition in [12] due to the variation of the constraint
(1). When σ̂ = σ, R(σ) is a scaled version of the joint
rigidity matrix defined in [12], hence all the properties and
theorems provided in [12] still hold for the current R(σ). The
null space of R(σ) characterizes the variations that preserve
the TOA constraints, termed infinitesimal variations. Given
TOA timestamp measurements, a position-clock framework
is called infinitesimally joint rigid if all its infinitesimal
variations are trivial, i.e., one of the following variations or a
combination of them: a position translation, a position rotation,
a clock offset translation, and a position-clock scaling. The
following theorem states the corresponding rank condition
on R(σ), where J i

d is defined in the notation subsection.
Theorem 1 ([12]): Given TOA timestamp measurements,

for a position-clock framework (D, σ) in Rd+2, the following
conditions are equivalent:
1) (D, σ) is infinitesimally joint rigid;
2) rank(R(σ)) = (d+ 2)n− d(d+ 1)/2− 2;
3) Null(R(σ)) = span{[1T

n ⊗Id,0
T ]T , [0T ,1T

n ⊗[0, 1]]T , σ,

[pT (In ⊗ J1
d )

T ,0T ]T , ..., [pT (In ⊗ J
d(d−1)

2

d )T ,0T ]T }.
Note that the basis of Null(R(σ)) in 3) represents the

trivial infinitesimal variations mentioned above. As these
trivial variations exist in all TOA-based sensor networks,
statement 2) presents the maximum rank of R(σ), which is
achieved when the framework is infinitesimally joint rigid.
Following the existing research on rigidity theory [14], [15],
the infinitesimal joint rigidity largely depends on the graph
topology rather than the configuration. A graph is called
generically joint rigid if its framework is infinitesimally
joint rigid for almost all position-clock configurations and
TOA timestamps. Thus, when generic configurations and
timestamps are considered, an infinitesimally joint rigid
framework can be determined or constructed by satisfying the
generically joint rigid graph condition. The corresponding test
and construction method refer to [12]. Examples of generically
joint rigid graphs are given in Fig. 1.

III. PROBLEM FORMULATION

The joint localization and clock synchronization problem
aims to uniquely determine the node positions and clock
parameters in a TOA-based sensor network. In this section,
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Fig. 1. Generically joint rigid graph examples in R2+2. The double-headed
arrow indicates the bidirectional TOA measurements between node pairs.

we formulate the problem as an optimization problem and
present the conditions on the prior knowledge of sensor
nodes to guarantee that the true configuration of the sensor
network is an isolated local minimizer of a position-clock
cost function.

Joint rigidity theory provides the topological conditions
that ensure localizability and clock synchronizability up to
trivial variations. To uniquely localize and synchronize the
network, prior knowledge of some nodes’ positions and clock
parameters is required to restrict these trivial variations. The
nodes with known positions/clock skews/clock offsets are
termed position/skew/offset anchors, respectively.

Consider a TOA-based sensor network, represented by
the position-clock framework (D, σ). The joint localization
and clock synchronization problem can be formulated as the
following minimization problem.

min
σ̂

V (σ̂) =
∑

k∼(i,j)∈E

fk(σ̂)
2 (4)

s.t. p̂i = pi, i ∈ Vp,

α̂i = αi, i ∈ Vα, β̂i = βi, i ∈ Vβ

where σ̂ is the optimization variable and fk is defined
in (2). The sets Vp, Vα, and Vβ denote the node set of
position/skew/offset anchors, respectively.

The subvectors of σ̂, corresponding to the unknown non-
anchor and known anchor states, are denoted by σ̂r ∈ Rnr

and σ̂0 ∈ Rn0 , respectively. Thus, there exist two selection
matrices Pr ∈ Rnr×n(d+2) and P0 ∈ Rn0×n(d+2) such that
σ̂r = Prσ̂ and σ̂0 = P0σ̂. We also term P0 the anchor
selection matrix. Note that according to the structure of Pr

and P0, the matrix P = [PT
r , PT

0 ]T is a permutation matrix.
Therefore, we have PrP

T
r = Inr

, P0P
T
0 = In0

, PrP
T
0 = 0

and σ̂ = PT
r σ̂r+PT

0 σ̂0. By substituting σ̂0 = P0σ into V (σ̂),
the constrained optimization problem (4) can be converted
to an unconstrained problem

min
σ̂r

Ṽ (σ̂r) =
∑

k∼(i,j)∈E

f̃k(σ̂r)
2, (5)

where f̃k(σ̂r) = fk(P
T
r σ̂r + PT

0 P0σ). Since f̃k(σr) =
fk(σ) = 0 for all k∼(i, j) ∈ E , the true configuration
σr = Prσ is a global minimizer of (5). The function Ṽ (σ̂r)
is continuous and twice differentiable in the neighborhood
of any generic σr. We define the reduced joint rigidity
matrix Rr(σ̂) = R(σ̂)PT

r , which is the partial derivative of
F (σ̂) with respect to σ̂r. The following lemma indicates the
condition under which σr is an isolated local minimizer.

Lemma 2: The true configuration σr is an isolated local
minimizer of (5) if Rr(σ) is full column rank.

Proof: The gradient and Hessian of Ṽ with respect to
σ̂r are

∇Ṽ = 2

m∑
k=1

f̃k · ∇f̃k, (6)

∇2Ṽ = 2

m∑
k=1

(∇f̃k(∇f̃k)
T + f̃k · ∇2f̃k). (7)

Evaluated at σ, f̃k(σr) = 0. Thus, ∇Ṽ = 0. Since
∇f̃k(σ̂r) = ∇fk(P

T
r σ̂r + PT

0 P0σ), we have ∇2Ṽ =
2
∑m

k=1 ∇f̃k(∇f̃k)
T = 2Rr(σ)

TRr(σ) by the definition. If
Rr(σ) is full column rank, ∇2Ṽ (σr) is positive definite,
therefore σr is an isolated local minimizer.

The following lemma builds the relationship between the
full column rank of Rr(σ) and the anchor selection matrix.

Lemma 3: Given a position-clock framework (D, σ) and
an anchor selection matrix P0, the reduced joint rigidity
matrix Rr(σ) is full column rank if P0M is full column rank
where M is a matrix whose column vectors form a basis of
Null(R(σ)).

Proof: Suppose a vector vr ∈ Rnr satisfying Rrvr = 0.
By Rr = RPT

r , we have PT
r vr ∈ Null(R), i.e., there exists a

vector w such that Mw = PT
r vr. By P0P

T
r = 0, P0Mw = 0.

If P0M is full column rank, then w = 0. Consequently,
vr = PrMw = 0, so Rr(σ) is full column rank.

Lemma 3 indicates that the full column rank property of
Rr(σ), which is relevant to the minimizer property, can be
determined by examining the anchor selection matrix and the
null space of the joint rigidity matrix. It also indicates that
the minimum number of anchors required for (5), i.e., the row
number of P0, is relevant to the minimum column rank of M ,
i.e., dim(Null(R(σ))). The minimum of dim(Null(R(σ)))
occurs when the framework is infinitesimally joint rigid, as
discussed in Section II. The following theorem states the
anchor requirement under infinitesimal joint rigidity. The
matrix J i

d is defined in the notation subsection.
Theorem 4: Consider a position-clock framework (D, σ)

in Rd+2 consisting of Kp position anchors with position
configuration p0 ∈ RdKp , Kα skew anchors with clock skew
configuration α0 ∈ RKα and Kβ offset anchors with clock
offset configuration β0 ∈ RKβ . Define a matrix

M0 =

1Kp ⊗Id 0 p0 Q(p0)
0 0 α0 0
0 1Kβ

β0 0

 ∈ RK×(
d(d+1)

2 +2),

where Q(p0) = [(IKp ⊗ J1
d )p0, (IKp ⊗ J2

d )p0, ..., (In ⊗
J
d(d−1)/2
d )p0] ∈ RdKp×d(d−1)/2 and K = dKp +Kα +Kβ .

If (D, σ) is infinitesimally joint rigid and the matrix M0 is
full column rank, then the true configuration σr is an isolated
local minimizer of (5).

Proof: By Theorem 1, if (D, σ) is infinitesimally joint
rigid, the null space of R(σ) is known. Thus, a matrix
M , whose columns are formed by a basis of Null(R(σ)),
holds M = [[1T

n ⊗Id,0
T ]T , [0T ,1T

n ⊗[0, 1]]T , σ, [pT (In ⊗
J1
d )

T ,0T ]T , ..., [pT (In⊗J
d(d−1)

2

d )T ,0T ]T ]. Therefore, M0 =
P0M , where P0 is the anchor selection matrix. By Lemma 2
and 3, if M0 is full column rank, then Rr(σ) is full column
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(a) Position translations and rotation (clock fixed)

(b) Clock offset translation
(position fixed)

(c) Position-clock scaling

Fig. 2. Basic trivial infinitesimal variations in R2+2 and how they are
restricted by the chosen anchors. The framework is infinitesimally joint rigid
where the undirected graph is a simplified presentation of Fig. 1(a). Position
variations (red arrows) and the position anchors (black) are illustrated in the
xy-coordinate plane. Clock variations (blue arrows) and the offset anchor
(half-black) are illustrated in the αβ-coordinate plane.

rank, consequently the true configuration σr is an isolated
local minimizer of (5).

Theorem 4 provides an approach to examine whether the
chosen anchors provide enough information to eliminate all
possible variations around the true configuration. An anchor
selection candidate, satisfying the condition in Theorem 4,
must have at least one offset anchor and d position anchors.
However, a skew anchor is not necessary. For d = 2 as
an example, two position anchors and one offset anchor
guarantee that M0 is full column rank provided position
anchors are not collocated. For d = 3, three position anchors
and one offset anchor guarantee that M0 is full column rank
provided position anchors are not collinear. Note that the
position/skew/offset anchors can be the same or different
nodes. Fig. 2 illustrates an example in R2+2, where the
framework is infinitesimally joint rigid. The chosen anchors
restrict all the trivial infinitesimal variations, indicating the
position and clock parameters can be uniquely determined in
the neighborhood of the true configuration.

Setting up anchors requires an accurate measurement of the
corresponding information. Typically, position information is
easier to obtain by manual measurements or existing posi-
tioning systems compared to clock parameters. As indicated
by Theorem 4, the minimum requirement on known clock
parameters is a single offset anchor provided position anchors
are properly chosen. Since a global clock is assumed to be a
common reference rather than an actual clock, we can simply
set an arbitrary node’s clock offset as zero to have a single
offset anchor. It is equivalent to assuming the global clock
starts at the same time as this node’s clock.

IV. DISTRIBUTED GRADIENT DESCENT ALGORITHM

In this section, we propose a distributed gradient-descent
algorithm for solving (5). We also discuss the requirements
for the initial configuration estimate and the method for
determining an appropriate initial estimate.

Let σ̂(τ)
r be the configuration estimate computed by the

algorithm at iteration τ for τ ≥ 1 and σ̂
(0)
r be the initial

estimate. The minimization of (5) can be obtained by the
gradient descent method. At each iteration, the configuration
estimate is updated by

σ̂(τ+1)
r = σ̂(τ)

r − γτ∇Ṽ (σ̂(τ)
r )

= σ̂(τ)
r − γτRr(σ̃

(τ))TF (σ̃(τ)), (8)

where σ̃(τ) = PT
r σ̂

(τ)
r + PT

0 P0σ and the step size γτ > 0.
The update at the ith node is

σ̂
(τ+1)
r,i = σ̂

(τ)
r,i − γτ

∑
k∈Ei

f̃k(σ̂
(τ)
r ) · ∇f̃k(σ̂

(τ)
r ), (9)

where Ei contains all edges connected to node i. The update
for each node only requires the information from its adjacent
nodes, hence the algorithm is distributed.

Suppose that the framework is infinitesimally joint rigid and
the given anchor selection follows the condition in Theorem
4, then Rr(σ) is full column rank and σr is an isolated local
minimizer. Therefore, there exist some ϵ > 0 such that for
any initial estimate σ̂

(0)
r ∈ Bϵ[σr], i.e., ∥σ̂(0)

r − σr∥ ≤ ϵ, and
appropriate step size [16], the gradient-descent algorithm is
guaranteed to converge to σr.

Due to the local convergence, the initial estimate needs to
be in the neighborhood of the true configuration, therefore,
careful considerations need to be applied when initializing
the estimate in practice. Let the true configuration σr =

[pTr , φ
T
r ]

T and the estimate σ̂
(τ)
r = [(p̂

(τ)
r )T , (φ̂

(τ)
r )T ]T . In

practice, the position p̂
(0)
r can be initialized by observation

or a less accurate positioning system so that p̂(0)r ∈ Bδ[pr],
where δ > 0 depends on the accuracy of the positioning
system. However, it is usually harder to initialize the clock
φ̂
(0)
r close to φr such that σ̂

(0)
r ∈ Bϵ[σr]. To determine a

good initial estimate, we propose the following initialization
procedure. Denote σ̂r = [p̂Tr , φ̂

T
r ]

T . By substituting p̂r = p̂
(0)
r

into (5), φ̂(0)
r is initialized as the minimizer of (5) with respect

to only the clock configuration, i.e.,

φ̂(0)
r = argmin

φ̂r

V1(φ̂r) := Ṽ (

[
p̂
(0)
r

φ̂r

]
). (10)

The structure of (1) enables rewriting Ṽ as Ṽ (σ̂r) = ∥Yrφ̂r−
b(p̂r)∥2, where Yr is a constant matrix. The function b(p̂r) =
[b1, ..., bm]T where bk = ∥p̂i − p̂j∥ for k∼(i, j) ∈ E subject
to p̂i = pi for all i ∈ Vp. Note that Yr is also the partial
derivative of F (σ̂) with respect to φ̂r. The reduced joint
rigidity matrix Rr(σ̂) can be written as

Rr(σ̂) =
[
Rdr(p̂) Yr

]
, (11)

where Rdr(p̂) = ∂F (σ̂)/∂p̂r. When the framework is in-
finitesimally joint rigid and the given anchor selection follows
the condition in Theorem 4, Rr(σ) is full column rank, hence
Yr is full column rank. Thus, V1(φ̂r) = ∥Yrφ̂r − b(p̂

(0)
r )∥2

has a unique minimizer, i.e., φ̂(0)
r = (Y T

r Yr)
−1Y T

r b(p̂
(0)
r ).

Since the true configuration σr satisfies Ṽ (σr) = 0, we have
Yrφr = b(pr). As the function b is locally L-Lipschitz, there
exists δ′ > 0 such that for p̂(0)r ∈ Bδ′ [pr],

∥φ̂(0)
r − φr∥ ≤ a∥b(p̂(0)r )− b(pr)∥ ≤ aL∥p̂(0)r − pr∥, (12)
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Fig. 3. The position and clock estimate error under the diagonally scaled
algorithm (15) with different numbers of iterations in the initialization (10).
Four curves from top to bottom correspond to 0, 200, 500, and 1000
iterations of initialization (10) followed by (15) after the indicated vertical
bars. The network topology follows Fig. 1(a) and the anchors satisfy the
condition in Theorem 4.

where a = ∥(Y T
r Yr)

−1Y T
r ∥. The initialization in (10) ensures

that the error of the initialized clocks is bounded by the error
of the initial positions. When the initial position estimates
satisfy p̂

(0)
r ∈ Bδ[pr] ⊆ Bδ′ [pr], by (10), the initialized

position-clock estimates satisfy ∥σ̂(0)
r − σr∥ ≤ ∥p̂(0)r − pr∥+

∥φ̂(0)
r −φr∥ ≤ (1+ aL)δ. Therefore, we can always find a δ

so that ∥σ̂(0)
r − σr∥ ≤ ϵ, i.e., σ̂(0)

r ∈ Bϵ[σr]. In other words,
when σ̂

(0)
r is not in the convergence domain of the minimizer

σr, it can be simply reinitialized by improving the accuracy
of the initial position estimate.

Similar to (8), the minimization in (10) also can be realized
by a distributed gradient descent algorithm, which is globally
convergent since V1 is quadratic. This approach addresses
the difficulty in initializing clock configuration estimates,
allowing the algorithm to be applied in a wider range of
scenarios. A simulation example is given in Fig. 3.

V. DIAGONAL SCALING AND 2-BLOCK GAUSS-SEIDEL
METHOD

Ill-conditioning is an unfavorable property in optimization
problems and results in a slow convergence rate and high noise
sensitivity. Unfortunately, the TOA-based joint localization
and clock synchronization problem formulated in (5) is
ill-conditioned due to the poor relative scaling between
position and clock variables. In this section, we discuss two
possible methods for better conditioning while maintaining
the distributed property of the algorithm.

According to the TOA-based relationship between position
and clock variables in (1), the clock variables are scaled by
the speed of light when contributing to the objective function
Ṽ (σ̂r) in (5), while position variables are not scaled. The
disproportionate variable effects cause the ill-conditioning
of (5). Considering the quadratic approximation of Ṽ (σ̂r)
near σr, we next show the ill-conditioning by examining the
condition number of the Hessian ∇2Ṽ (σr). By (7), we have
∇2Ṽ (σr) = RT

r Rr, where Rr is the reduced joint rigidity
matrix evaluated at the true configuration σ. According to

the partition of Rr given in (11),

RT
r Rr =

[
Rdr(p)

TRdr(p) Rdr(p)
TYr

Y T
r Rdr(p) Y T

r Yr

]
. (13)

Thus, we have the minimum eigenvalue λmin(R
T
r Rr) ≤

λmin(Rdr(p)
TRdr(p)) [17, Theorem 4.3.28] and the maxi-

mum eigenvalue λmax(R
T
r Rr) = ∥Rr∥2. The 2-norm ∥Rr∥ ≥

maxi,j |rij |, where rij is the entry in the ith row and jth
column of Rr [18]. Since Rr is the partial derivative of F with
respect to σr, according to the function expression in (2), we
have rij = c for some i, j. Consequently, λmax(R

T
r Rr) ≥ c2

and the condition number of the Hessian ∇2Ṽ (σr) is

κ =
λmax(R

T
r Rr)

λmin(RT
r Rr)

≥ c2

λmin(Rdr(pr)TRdr(pr))
. (14)

With generic position configurations, λmin(Rdr(pr)
TRdr(pr))

is typically small. Due to the magnitude of the speed of light
c, the condition number is overly large, indicating that the
problem is ill-conditioned.

A scaled version of the gradient descent method is generally
considered in ill-conditioned problems. The update is

σ̂(τ+1)
r = σ̂(τ)

r − γτDτ∇Ṽ (σ̂(τ)
r ), (15)

where Dτ is positive definite and symmetric. This iteration is
equivalent to the steepest descent applied in a new coordinate
system of a vector x̂(τ) = (Dτ )

1/2σ̂
(τ)
r . The Hessian of

Ṽ with respect to x̂(τ) is (Dτ )
1/2∇2Ṽ (σ̂

(τ)
r )(Dτ )

1/2. By
choosing an appropriate Dτ to achieve a smaller condition
number, the problem (5) can be better conditioned. For dis-
tributed implementation and low computation complexity, we
consider a constant diagonal matrix Dτ = diag{Inp

, c−2Inφ
},

where np and nφ correspond to the dimension of pr and φr,
respectively. This matrix rescales the clock parameters to
eliminate the impact of the speed of light, which significantly
improves the conditioning. A simulation example is given in
Fig. 3, where the condition number of the Hessian matrix
at the minimizer is decreased from 3.6 × 1019 to 535.8 by
applying the diagonally scaled algorithm.

Another method for alleviating the ill-conditioning of (5)
is to decompose the position and clock variables in the
minimization of the objective function. It can be realized
by the 2-block Gauss-Seidel method [19], also referred to as
the block coordinate descent method, formulated as follows.
Given a configuration estimate σ̂

(τ)
r = [(p̂

(τ)
r )T , (φ̂

(τ)
r )T ]T

at iteration τ , the estimate at the next iteration σ̂
(τ+1)
r =

[(p̂
(τ+1)
r )T , (φ̂

(τ+1)
r )T ]T where

φ̂(τ+1)
r = argmin

φ̂r

Ṽ (

[
p̂
(τ)
r

φ̂r

]
), (16)

p̂(τ+1)
r = argmin

p̂r

Ṽ (

[
p̂r

φ̂
(τ+1)
r

]
). (17)

As the function Ṽ is continuously differentiable in the
neighborhood of true configuration and bounded below,
subproblems (16) and (17) have optimal solutions following
a similar analysis for (5), hence the 2-block Gauss-Seidel
method is well-defined and converges to a local minimizer
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Fig. 4. Position and clock estimate error using the 2-block Gauss-Seidel
method with different termination criteria. For the black curve (maxit), the
convergence of each block is terminated after a predetermined number of
iterations. For the gray curve (gradtol), the convergence of each block is
terminated when the 2-norm of the node-based gradient component is less
than a predetermined value for all nodes1. The example follows the same
network setup as in Fig. 3.

of (5) [19, Corollary 2]. Subproblems (16) and (17), which
involve clock and position variables, respectively, both have
better conditioning compared to the original problem as the
impact of the speed of light is eliminated. The conditioning
properties of (16) and (17) are characterized by the relatively
small condition number of Y T

r Yr and Rdr(p̂)
TRdr(p̂), respec-

tively. The minimization of subproblems can also be solved
distributedly by a gradient descent algorithm. A simulation
example is given in Fig. 4, where the condition number of the
Hessian matrix of (16) and (17) at the minimizer are 137.8
and 12.8, respectively.

Better conditioning of the subproblems in the 2-block
Gauss-Seidel method improves the speed of convergence and
the robustness to numerical errors. It generally requires more
iterations compared to the diagonally scaled algorithm but
has lower computational complexity per iteration due to the
decomposition of the optimization variables. Furthermore,
by first updating the clock variable block, the subproblem
(16) plays the same role as the initialization approach (10) in
Section IV. Therefore, no additional initialization procedure
for clock configuration is needed when applying the 2-block
Gauss-Seidel method.

VI. CONCLUSIONS

In this paper, we studied the joint localization and clock
synchronization problem in TOA-based sensor networks by
formulating it as an optimization problem. Based on joint
rigidity theory, we presented the topological condition and
anchor requirements for uniquely determining the position
and clock parameters. A distributed algorithm with local
convergence was proposed along with an efficient method
for initialization. We also studied the ill-conditioning of the
problem and proposed two methods that alleviate the ill-
conditioning and maintain the distributed manner.

1Detecting whether all nodes satisfy the termination condition requires
additional protocol, e.g., termination message passing through a spanning
tree [20].

The analysis in the paper is based on accurate TOA
timestamp measurements. Characterizing and reducing the
impact of noisy measurements on the estimation result is a
direction of future work. For an extension where multiple
timestamp measurements are sequentially acquired across
the network, a stochastic gradient descent method can be
considered. The construction of a joint rigid network relies
on the bidirectional communication assumption, see [12],
which restricts the communication structure in the network.
Constructing a joint rigid network without bidirectional
communication assumption is another future direction.
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