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Abstract—While exact parameter estimation is desired
in numerous applications, many adaptive controllers require
the fulfillment of the persistency of excitation (PE) condition
to achieve that objective. Relaxing the PE condition poses
a challenging theoretical problem and many research works
have been devoted to addressing this issue. In this paper,
we propose a novel adaptive robust nonlinear H∞ optimal
controller for trajectory tracking of mechanical systems sub-
jected to unknown parameters. The proposed method includes
an extra term, based on the dynamic regressor extension and
mixing (DREM) approach, into the adaptive law which enables
exact parameter estimation even without fulfilling the PE
condition. The effectiveness of the proposed adaptive controller
is corroborated with numerical experiments involving a CRS-
A465 robot manipulator and comparison analyses with a classic
adaptive nonlinear H∞ controller.

I. INTRODUCTION

When considering idealized situations, it is possible
to establish a precise mathematical representation of a
mechanical system using classical methods such as the
Euler-Lagrange (EL) equations of motion. Nevertheless,
practical applications often introduce uncertainties in the
model parameters, posing challenges in achieving trajec-
tory tracking when implementing control strategies. To
handle these challenges, two of the most common control
strategies employed are the robust control approach,
which focuses on maintaining stability and performance
in the presence of uncertainties, and the adaptive control
approach which aims to modify the controller based on
evolving system dynamics.

Regarding robust control, the H2 [1] and H∞ [2]
control strategies have gathered considerable attention.
These methods were originally formulated within the
frequency domain to handle single-input-single-output
(SISO) systems that are represented by transfer func-
tions [3]. In this domain, the H2 controller seeks to
minimize the energy of the system impulse response
from the disturbance to the output [4], while the H∞
controller minimizes the maximum gain given by the
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closed-loop system to a disturbance signal [5]. In the con-
text of multiple-input-multiple-output (MIMO) systems
in state-space representation, the H∞ control was first
introduced in [6] and has later paved the way for the
development of H2 and H∞ controllers based on Linear
Matrix Inequalities (LMIs) [7], [8]. As for nonlinear sys-
tems, the H∞ control strategy has been first introduced
in [9], with the problem being formulated in the L2 space
using dissipative systems theory [10]. Concerning the
development of nonlinear H2 controllers for mechanical
systems, [1] stands out as a pioneering work. This work
has formulated the nonlinear H2 control problem for
fully actuated mechanical systems represented by EL
equations via game theory, offering an analytical solution
to the resulting Hamilton-Jacobi (HJ) equation. Building
on this foundation, subsequent studies, like [11], have
extended the nonlinear H∞ control strategy to the same
class of systems. Additionally, in [12], the development
of the nonlinear mixed H2/H∞ control strategy for
mechanical systems with actuation redundancy has been
achieved.

Regarding adaptive controllers, the EL equations
present some structural characteristics, notably, the ca-
pacity of representing the model as a product of a matrix,
referred to as the “regressor”, and a vector of constant
parameters, which can be helpful when designing these
controllers. Leveraging this structural feature and based
on [1], in [13], an adaptive nonlinear H∞ controller has
been formulated for fully actuated mechanical systems.
This adaptive controller aims to estimate uncertain pa-
rameters and external disturbances while performing tra-
jectory tracking with guaranteed stability. Nonetheless, it
fails to achieve parameter estimation convergence due to
the restrictive requirement of satisfying the persistency
of excitation (PE) condition [14]. To ensure parameter
convergence, parameter drift must be prevented by guar-
anteeing that the regressor vector is persistently excited.
In [15], it has been demonstrated that the necessary
and sufficient condition to guarantee the convergence of
the parameters is that the regressor matrix satisfies the
PE condition along the reference trajectories, enabling a
priori verification.

Recently, there has been a noteworthy effort on relax-
ing the requirement for PE, exemplified by the consid-
eration of interval excitation (IE) [16]. In this study, an
approach known as Composite Learning Robot Control
(CLRC) has been designed to achieve fast and accurate
parameter estimation under the less stringent IE condi-
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tion. Within this context, one particularly technique has
garnered attention. The Dynamic Regressor Extension
and Mixing (DREM) method unfolds in two stages [17].
First, it involves the generation of new regression forms
through the application of dynamic operators to the
original regression dataset. Subsequently, these newly
generated data forms are combined to construct the de-
sired final regression structure, enabling the application
of the conventional parameter estimation techniques. In
[18], a composite scheme, combining he standard gradient
adaptive law with a DREM-based additional term, has
been proposed and applied to a robotic manipulator.
It has been shown that the new parameter convergence
condition is more relaxed than the PE one, but stronger
than the initial and interval excitation assumptions, and
can also be partially verified online.

Accordingly, this paper proposes a novel adaptive non-
linear H∞ controller with exact parameter estimation.
The proposed approach introduces an additional term
based on the DREM method to estimate unknown pa-
rameters. The controller is capable of ensuring exponen-
tial trajectory tracking and, in cases where PE conditions
are not ensured, the achievement of a less restrictive
condition leads to exact parameter estimation.

II. Preliminaries

Consider the problem of estimation of constant param-
eters of the p-dimensional linear regression

y(t) = m′(t)θ, (1)

with y : R+ → R and m : R+ → Rp being known,
bounded functions of time, and θ ∈ Rp being the vector
of unknown parameters. The classic gradient estimator
˙̂
θ(t) = −Ψm(t)

(
m′(t)θ̂(t)− y(t)

)
, with a given constant

positive definite adaptation gain matrix Ψ ∈ Rp×p, yields
the parameter error equation

˙̃
θ(t) = −Ψm(t)m′(t)θ̃(t), (2)

where θ̃ ≜ θ̂ − θ is the vector of parameter estimation
error. It is well-known that the zero equilibrium point of
the time-varying linear system (2) is uniformly globally
exponentially stable iff the regressor vector m(t) satisfies
the PE condition [19]∫ t+T

t

m(τ)m(τ)′dτ ≥ δI, (3)

for T , δ > 0 and for all t ≥ 0. Nevertheless, if m(t) does
not satisfy (3), as is common in many practical scenarios,
very little can be inferred about the convergence of the
parameter estimation error.

Due to the difficulty of meeting the PE condition, the
DREM method becomes an alternative [17]. The DREM
generates p new, one-dimensional, regression models to
independently estimate each of the parameters under
conditions on the regressor m(t) that differ from the
PE condition (3). To employ the DREM, initially, p − 1
linear stable L∞ operators Hi : L∞ → L∞, for i ∈
{1, 2, p− 1}, are introduced. These operators can be, for
example, exponentially stable linear filters of the form

ẏfi(t) = −biyfi(t)+ aiy(t), where ai ̸= 0 and bi > 0. Hence,
p− 1 filtered outputs can be obtained

yfi(t) = m′
fiθ. (4)

Pilling up the original linear regression (1) with the p−1
filtered regressors (4), we can construct the augmented
regressor system

yf (t) = Yf (t)θ, (5)

where yf = [y yf1 . . . yfp−1 ]
′, and Yf =

[m′ m′
f1

. . . m′
fp−1

]′. Using the fact that adj(Yf )Yf =

Yfadj(Yf ) = ϕI, in which ϕ ≜ det(Yf ) and adj(·) is the
adjugate matrix of (·), we multiply both sides of (5)
by the adjugate matrix adj(Yf ) of Yf ∈ Rp×p to obtain
p decoupled equations of the form yej = ϕθj , ∀j ∈
{1, 2, ..., p}, with ye = adj(Yf )yf , where (·)j is the j-th
element of the vector (·). Thus, p-decoupled estimators of

the form ˙̂
θj = −γjϕ

(
ϕθ̂j − ye

)
are obtained with γj > 0,

which leads to the following parameter error dynamics:

˙̃
θj = −γjϕ

2θ̃j , (6)

where θ̃j is the j-th element of the error vector of
unknown parameters. Then, from (6), one can infer that

ϕ /∈ L2 =⇒ limt→∞θ̃j = 0, ∀j ∈ {1, 2, ..., p}. (7)

As demonstrated in [20], it is always possible to find
operators Hi such that if the PE condition (3) is satisfied,
then so is ϕ /∈ L2, leading to the validity of equation (7).
It can be concluded that the DREM condition, (7), is
easier to be satisfied than the PE condition, (3).

III. Mathematical Modeling

The mathematical model of a n-degrees of freedom
mechanical system can be expressed by the EL equation
in the canonical form

M(q)q̈(t) +C(q̇, q)q̇(t) +G(q) = τ + τl, (8)

where q(t) ∈ Rn is the vector of generalized coordinates,
M(q) ∈ Rn×n is the inertia matrix, C(q̇, q) ∈ Rn×n is
the coriolis and centripetal force matrix, G(q) ∈ Rn is
the vector of gravitational forces, τ ∈ Rn is the vector
of generalized control inputs, and τl ∈ Rn represents
the external disturbances. Equation (8) possesses the
following properties [21].

Property 1: The inertia matrix M(q) is symmetric and
positive definite for every q(t) ∈ Rn.

Property 2: There exist constants λm, λM ∈ R, such
that the inequality λm||x̃||2 ≤ x̃′Mx̃ ≤ λM ||x̃||2 holds
∀q(t) ∈ Rn, x̃ ∈ Rn, and 0 < λm ≤ λM < ∞.

Property 3: MatrixN = Ṁ(q)−2C is skew-symmetric,
provided that the coriolis and centripetal forces matrix
C(q, q̇) is derived using Christoffel symbols of the first
kind.

Property 4: The EL equation (8) is linear parametriz-
able for a suitable selection of the vector of parameters
θ ∈ Rp, allowing to write

M(q,θ)q̈(t) +C(q, q̇,θ)q̇(t) +G(q,θ) = Y(q, q̇, q̈)θ, (9)

where Y(q, q̇, q̈) : Rn × Rn × Rn → Rn×p is called the
regressor matrix.
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For control design purposes, we define the state vector
x̃ =

[
˙̃q′ q̃′]′, where q̃ ≜ q(t) − qr(t), with qr(t) ∈ C2

being the desired reference, and consider the state-space
transformation [1]

z =

[
z1

z2

]
= T0x̃ =

[
T1

T2

] [
˙̃q
q̃

]
=

[
T11 T12

0 I

] [
˙̃q
q̃

]
, (10)

where T11,T12 ∈ Rn×n are constant matrices to be deter-
mined. In what follows, T11 is assumed to be a diagonal
matrix such that T11 = t11I for some t11 > 0. Taking into
account Property 4, one can write

ż=

[
−M−1C 0

T−1
11 −T−1

11 T12

]
z+BT11M

−1 (−Y θ+τ+τl) , (11)

with B = [I 0]′ and Y θ = M(q)
(
q̈r(t)− T−1

11 T12
˙̃q
)
+

C(q̇, q)
(
q̇r(t)− T−1

11 T12q̃
)

+ G(q). Applying the state
space transformation (10) into (11) results in the follow-
ing dynamic equation:

˙̃x = f(x̃, t)x̃+ g(x̃, t)u+ g(x̃, t)d, (12)

where f(x̃, t) ≜ T−1
0

[
−M−1C 0

T−1
11 −T−1

11 T12

]
T0, g(x̃, t) ≜

T−1
0 BM−1, d ≜ T11τl, u ≜ T11 (−Y θ + τ ).

IV. Adaptive Nonlinear H∞ Control Design

In this section, we develop an adaptive robust non-
linear H∞ optimal control law for the system (12), with
the objective of achieving trajectory tracking while exact
estimating the vector of parameters θ and maintaining
robustness against external disturbances. This control
approach is derived by combining the gradient adaptive
algorithm and the DREM method.

Before proposing the adaptive nonlinear H∞ con-
troller, we recall the following result from [13].

Corollary 1 (Adapted from [13]): Consider the nonlin-
ear system described by (12). Let R ∈ Rn×n and Q ∈
R2n×2n be given symmetric positive definite matrices.
Suppose ρ2I > R and both T0 and K, with K = K′ > 0
and K ∈ Rn×n, satisfy the algebraic Riccati equation[

0 K
K 0

]
+Q− T ′

0B

(
R−1 − 1

ρ2
I

)
B′T0 = 0. (13)

Then, the adaptive robust nonlinear H∞ control law

˙̂
θ = −K−1

θ Y ′T11B
′T0x̃, (14)

τ = Y θ̂ + T−1
11 u∗, (15)

τl = T−1
11 d∗, (16)

with u∗ = −R−1B′T0x̃, d∗ = 1
ρ2
B′T0x̃, and the symmet-

ric and positive definite matrix Kθ ∈ Rp×p, is a solution
to the nonlinear H∞ optimal control problem

min
u∈L2

max
d∈L2

∫ t

t0

(
||x̃||2Q + ||u||2R − ρ2||d||2

)
dτ ≤ 0, (17)

in which ρ ∈ R is the provided H∞ attenuation level.
Aiming at exact parameter estimation guarantees,

next, we redesign the adaptive robust nonlinear H∞
optimal control law (14)-(16) using the DREM approach.

First, we construct the augmented regressor matrix Yf

to obtain a relationship similar to (5). To do so, we define
the filtered regressor Yϕ1 ∈ Rn×p,

Ẏϕ1 = −λϕ1Yϕ1 + λϕ1Y (q, q̇, q̈), Yϕ1(t0) = 0, (18)

with λϕ1 > 0, and the filtered input τϕ1 ∈ Rn,

τ̇ϕ1 = −λϕ1τϕ1 + λϕ1τ , τϕ1(t0) = 0. (19)

Remark 1: For implementation purposes, integration
by parts can be applied to (18) to avoid the need for
knowledge of q̈(t) [18].
According to the Swapping Lemma [14], (18) and (19)

yields τϕ1 = Yϕ1(q(t), q̇(t))θ. Next, we assume that n < p
to construct a square augmented regressor matrix Yf , by
following the steps:

(1) Define the first n rows of Yf as the first n rows of
Yϕ1 such that p− n extra rows are required.

(2) Define ñ as the integer total number of matrices
Yϕ1 , . . . ,Yϕñ required to form the square matrix Yf ,
so ñ− 1 extra matrices are necessary.

(3) If

ñ =
p

n
, (20)

is an integer, then ñ−1 matrices Yϕ2 , . . . ,Yϕñ ∈ Rn×p

are generated by applying ñ−1 exponentially stable
linear filters Hj : L∞ → L∞ for j = 2, . . . , ñ to get

Yf =
[
Y ′

ϕ1
· · · Y ′

ϕñ

]′
, ∈ Rp×p (21)

where Ẏϕj = −bjYϕj +ajYϕ1 , Yϕj (t0) = 0, with aj ̸= 0
and bj > 0 for j = 2, . . . , ñ.

(4) In the case where (20) is not an integer, the DIV
operator can be used to obtain an integer (e.g. 9

4 =
2.25, but 9DIV4 = 2). This implies ñ = (pDIVn)+ 1.

In this case, the last term of matrix Yϕñ in (21)
is of different dimension. The dimension of this
matrix can be computed using the MOD operator
which gives the remainder of an integer division (e.g.
9MOD4 = 1). Thus implying Yϕñ ∈ R(pMODn)×p.

Furthermore, similar reasoning is applied to the outputs
as we apply the same exponentially stable linear filters
to the filtered output such that

τf =
[
τ ′
ϕ1

. . . τ ′
ϕñ

]′
. (22)

Thus, we can write

τf = Yfθ. (23)

Multiplying (23) on the left-hand by adj(Yf ) yields

τe = adj(Yf )Yfθ = ϕθ, (24)

where ϕ = det(Yf ) and τe = adj(Yf )τf . It is worth
highlighting that (24) is designed in a way that yields
p decoupled equations.
Now consider the following modification to the adap-

tive law (14):

˙̂
θ = −K−1

θ

(
Y ′T11B

′T0x̃+ fθ

)
. (25)

Note that (25) is a composite estimation law that de-
pends on both the system state, x̃, and the DREM
component vector, fθ, whose elements are given by

fθi = γiϕ
(
ϕθ̂i − τei

)
, (26)

where γi > 0 is the i-th component of the positive definite
diagonal matrix Γ ∈ Rp×p, with Γ ≜ diag(γ1, γ2, · · · , γp).
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Given that the unknown parameters are constant, the
closed-loop dynamics of the parameter error can be
described by

˙̃
θ = −K−1

θ

(
Y ′T11B

′T0x̃+ f̄θ

)
, (27)

with

f̄θ = Γϕ2θ̃. (28)

To derive (28), we have substituted (24) into (26). It is
noteworthy that fθ = f̄θ; however, fθ is implementable,
whereas f̄θ is not. The latter is used only for stability
analysis purposes.

The main contribution of this work is summarized in
the subsequently presented Theorem 1. To facilitate the
proof of this theorem, the following factorizations are
considered:

Q =

[
Q11 Q12

∗ Q22

]
=

[
Q′

1Q1 Q12

∗ Q′
2Q2

]
, (29)

and

R′
1R1 =

(
R−1 − 1

ρ2
I

)−1

. (30)

Then, taking into account (29) and (30), we compute

T11 = R′
1Q1, T12 = R′

1Q2, (31)

and

K =
1

2

(
Q′

1Q2 +Q′
2Q1

)
− 1

2

(
Q′

12 +Q12

)
> 0. (32)

Considering the factorizations (29) and (30), one can
show via direct calculation that (31) and (32) compose
a solution of the Riccati equation (13).

Theorem 1: Let R = r2I > 0 and

Q =

[
a2
1In×n 0
∗ a2

2In×n

]
> 0, (33)

with given parameters r, a ∈ R+. Consider a desired
disturbance attenuation level, ρ, such that ρ2I > R.
Then, the adaptive robust nonlinear H∞ optimal control
law

˙̂
θ = − 1

a1
Y ′ [a1I a2I

]
x̃− 1

t211
fθ, (34)

τ = − 1

a1r2
[
a1I a2I

]
x̃+ Y θ̂, (35)

τl =
1

a1ρ2
[
a1I a2I

]
x̃, (36)

with t11 = rρa1√
ρ2−r2

, is a solution to the nonlinear H∞

optimal control problem (17). Moreover, since

Φ ≜ Q+

[
a2
1I a1a2I
∗ a2

2I

]
> 0, (37)

and if

ϕ2 ≥ 1

2

(
λmin (Φ)

λmin (Γ)

)
, (38)

with ϕ = det(Yf ), and

κ =

(
λmin (Φ)

2λ2

)
, (39)

then, exponential stability is guaranteed for the closed-
loop system (8) with the control law (34)-(35) for the

worst-case disturbance (36), ensuring that both x̃ and θ̃

converges to zero with decay rate κ.
Proof: From R = r2I, we have that (30) becomes

R′
1R1 =

r2ρ2

ρ2 − r2
I =⇒ R1 =

rρ√
ρ2 − r2

I. (40)

From (31), (33) and (40), we have that

T11 = t11I =

(
rρa1√
ρ2 − r2

)
I, T12 =

(
rρa2√
ρ2 − r2

)
I.

(41)

Also, from the definitions of B and T0, we obtain

B′T0 =
ρr√

ρ2 − r2

[
a1I a2I

]
. (42)

Replacing (41) and (42) into (15), (16) and (25), and
choosing Kθ = t211I, render the adaptive robust nonlinear
H∞ control law (34)-(36). Next, for the sake of conve-
nience, let’s rewrite (12) in terms of τ and τl

˙̃x = T−1
0

[
−M−1C 0

T−1
11 −T−1

11 T12

]
T0x̃

+ T−1
0 BM−1T11 (−Y θ + τ + τl) , (43)

and consider the candidate Lyapunov function

V (X , t) = Vx̃(x̃, t) + Vθ̃(θ̃), (44)

with the augmented state vector X = [x̃′ θ̃′]′, such that

Vx̃(x̃, t) ≜
1

2
x̃′T ′

0

[
M(q) 0

∗ K

]
T0x̃, (45)

Vθ̃(θ̃) ≜
1

2
θ̃′Kθθ̃, (46)

which satisfies

λ1||X ||2 ≤ V (X , t) ≤ λ2||X ||2, (47)

where λ1 = 1
2
min{λh, λmin (Kθ)}, with λh ≜ λmin (H)

in which H ≜ T ′
0blkdiag(M ,K)T0. Also, λ2 =

1
2
max{λH , λmax (Kθ)}, λH = λmax (H), where λmin (·) and

λmax (·) stand for the smallest and highest eigenvalue of
(·), respectively. Then, the time derivative of (44) is

V̇ (X , t) =
∂Vx̃(x̃, t)

∂t
+

(
∂Vx̃(x̃, t)

∂x̃

)′
˙̃x+ θ̃′Kθ

˙̃
θ. (48)

Taking the partial derivative of (45) with respect to x̃
and multiplying by (43) yields

∂Vx̃(x̃, t)

∂x̃

′
˙̃x=x̃T ′

0

[
M 0
0 K

]
T0

˙̃x+
1

2

2n∑
i=1

x̃′T ′
0

[
∂M
∂x̃i

˙̃xi 0

0 0

]
T0x̃

= x̃′T ′
0

[
−C 0

KT−1
11 −KT−1

11 T12

]
T0x̃

+
1

2

2n∑
i=1

x̃′T ′
0

[
∂M
∂x̃i

˙̃xi 0

0 0

]
T0x̃

+ x̃′T ′
0BT11 (−Y θ + τ + τl) . (49)

Using Property 3 renders

∂Vx̃(x̃, t)

∂x̃

′
˙̃x = x̃′

[
0 0
K 0

]
x̃+

1

2
x̃′T ′

0

[∑2n
i=1

∂M
∂x̃i

˙̃xi−Ṁ 0

0 0

]
T0x̃

+x̃′T ′
0BT11 (−Y θ + τ + τl) . (50)
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In the following, the partial derivative of (45) with
respect to time is computed as

∂Vx̃(x̃, t)

∂t
=

1

2
x̃′T ′

0

[
∂M
∂t

0
0 0

]
T0x̃. (51)

Since M(q) = M(q̃ + qr(t)) = M(x̃, t) , then Ṁ(x̃, t) =
∂M
∂t

+ ∂M
∂x̃

˙̃x . Considering this and substituting (27) and
(50)-(51) into (48) yields

V̇ (X , t) = x̃′
[
0 0
K 0

]
x̃+ x̃′T ′

0BT11 (−Y θ + τ + τl)

− θ̃′Y ′T11B
′T0x̃− θ̃′f̄θ. (52)

Note that we can write (52) as

V̇ (X , t) =
1

2
x̃′
[
0 K
K 0

]
x̃+ x̃′T ′

0BT11 (−Y θ + τ + τl)

− θ̃′Y ′T11B
′T0x̃− θ̃′f̄θ. (53)

Using (13) and (30), yields

V̇ (X , t) =
1

2
x̃′
(
−Q+ T ′

0B
(
R′

1R1

)−1
B′T0

)
x̃− θ̃′f̄θ

+ x̃′T ′
0BT11 (−Y θ + τ + τl)− θ̃′Y ′T11B

′T0x̃.
(54)

Substituting (34)-(36), (41), and (42) into (54) yields

V̇ (X , t) = −1

2
x̃′
(
Q+

[
a2
1I a1a2I
∗ a2

1I

])
x̃− θ̃′f̄θ. (55)

Replacing (28) into (55) and given inequalities (37)-(38),

V̇ (X , t) = −1

2
x̃′Φx̃− ϕ2θ̃′Γθ̃, (56)

≤ −1

2

2n∑
i=1

λmin (Φ) (x̃i)
2 −

p∑
j=1

λmin (Γ)ϕ2(θ̃j)
2,

≤ −
2n∑
i=1

(
λmin (Φ)

2

)
(x̃i)

2 −
p∑

j=1

(
λmin (Φ)

2

)
(θ̃j)

2,

which implies V̇ (X , t) ≤ −
∑2n+p

k=1

(
λmin(Φ)

2

)
(Xk)

2 =

−
(

λmin(Φ)
2

)
||X ||22, where Xk is the k-th element of the

augmented state vector X ∈ R2n+p. Using (47), we obtain

V̇ (X , t) ≤ −
(
λmin (Φ)

2

)
1

λ2

(
λ2||X ||2

)
, (57)

= −
(
λmin (Φ)

2λ2

)
V (X , t) ≤ −κV (X , t),

with κ given in (39). According to the Comparison
Lemma [22], the solution of (58) is given by V (X , t) ≤
e−κtV (X (0), t),which completes the proof of the exponen-
tial stability of the system (12) in closed-loop with the
control law (34)-(36) and, consequently, for the system
(8).

V. Results

In this section, numerical experimental results are
presented to corroborate the efficacy of the proposed
adaptive nonlinear H∞ control strategy. The numerical
experiment is conducted considering a simplified version
of the CRS-A465 robot model [23]. In this simplified
model, we consider only joints 2, 3, and 5, which have
been renamed as 1, 2, and 3, respectively, while the other
degrees of freedom remain fixed, following the approach

established in [18]. This system is described by the EL
equation

M(q)q̈(t) +C(q̇, q)q̇(t) +G(q) = τ , (58)

with the elements Mij and Gi corresponding to the i-
th row and j-th columns of the inertia and the gravity
vector computed as M11 = θ1 + 2θ2s2 + 2c3θ3 + 2θ4s23,
M12 = M21 = θ2s2 + 2θ3c3 + θ4s23 + θ5, M13 = M31 =

θ3c3 + θ4s23 + θ6, M22 = 2θ3c3 + θ5, M23 = M32 = θ3c3 +
θ6, M33 = θ6, G1 = θ7c1 + θ8s12 + θ9s123, G2 = θ8s12 +

θ9s123, and G3 = θ9s123, and the coriolis and centrifugal
forces matrix can be obtained from the inertia matrix by
computing the Christoffel symbols of the first kind [21].
In addition, s2 = sin(q2), s3 = sin(q3), s12 = sin(q1 + q2),

s23 = sin(q2 + q3), s123 = sin(q1 + q2 + q3), c1 = cos(q1),

c2 = cos(q2), c3 = cos(q3), c23 = cos(q2 + q3), q̇12 = q̇1 + q̇2,

q̇23 = q̇2 + q̇3, and q̇123 = q̇1 + q̇2 + q̇3. The parameters are
θ1 = 6.3922 kg m2, θ2 = 1.4338 kg m2, θ3 = 0.0706 kg m2,

θ4 = 0.0653 kg m2, θ5 = 2.4552 kg m2, θ6 = 0.2868 kg m2,

θ7 = 113.6538N m, θ8 = 46.1168N m, θ9 = 2.0993N m.
In the numerical experiment, the robot manipulator

started at the initial conditions q(0) = [0 0 90]′(deg) and
q̇(0) with θ̂(0) = 0 and was requested to track the desired
trajectory qr(t) = [90 −90 0](deg) , with q̇r(t) = q̈r(t) = 0.
The adaptive nonlinear H∞ controller was implemented
considering (34)-(35) and synthesized with the tuning
parameters Q = 0.6I, R = (0.01)2I, ρ = 0.2, with the
DREM term gain Γ = 10I. Additionally, λϕ was set to 1,
in the filtered regressor (18). The values b2 = 0.2, b3 = 0.3,
and a2 = a3 = 100 were used to compute Yf in (21).The
adaptive nonlinear H∞ controller proposed in [13] was
also designed for the robot manipulator and implemented
considering (14)-(15) with the same tuning parameters.
That controller is from now on called H∞ (Chen et. all
1997), whereas ours is called H∞ + DREM.
The results of the numerical experiment are presented

in Figs. 1-3. Note that both adaptive nonlinear H∞
controllers achieved the desired positions with nearly
identical performance and with bounded control inputs.
Nevertheless, the H∞ + DREM controller achieved exact
parameter estimation since condition (38) is satisfied, as
shown in Fig. 3. It is noteworthy that, for the requested
desired trajectory, the PE condition is not fulfilled [15].
Thus, the H∞ (Chen et. all 1997) controller was not able
to achieve exact parameter estimation.

VI. Conclusions

This work proposed a novel adaptive nonlinear H∞
controller based on the DREM approach for trajectory
tracking with exact parameter estimation of mechanical
systems. The proposed adaptive nonlinear H∞ controller
was designed for a simplified version of the CRS-A465
robot manipulator. Comparison analyses were performed
with the adaptive nonlinear H∞ controller proposed
in [13]. The results demonstrated that both controllers
achieved similar performance with respect to the tracking
of the states; however, different from the adaptive control
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Fig. 1. Temporal evolution of the states and torques for both the
H∞ + DREM and the H∞ (Chen et. all 1997) controllers.
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Fig. 2. Temporal evolution of the parameters estimation error.

strategy in [13], the controller here proposed can ensure
trajectory tracking with exact parameter estimation even
when the PE condition is not fulfilled. Future works
includes extending the adaptive nonlinear H∞ controller
with exact parameter estimation to its counterpart in the
Sobolev Spaces, namely the W∞ controller [24].
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Local stability and ultimate boundedness in the control of robot
manipulators. Springer, 2022.

[24] D. N. Cardoso, S. Esteban, and G. V. Raffo, “A robust
optimal control approach in the weighted sobolev space for
underactuated mechanical systems,” Automatica, vol. 125, p.
109474, 2021.

2251


