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Abstract— This paper proposes a Control Barrier Function
(CBF)-based delay adaptive controller design to accomplish
robust safety in the presence of unknown but bounded constant
input delay. To this end, we first estimate the input delay by
using a gradient descent method minimizing the discrepancy
between the current state and the estimated state. Then, we
establish the state prediction feedback with the estimated input
delay, which is leveraged to attenuate the effect of the input
delay. However, due to the error between the true delay and
the estimated delay, there is a state prediction error that
leads to violations of safety if we use the normal CBFs. To
remedy this, we use ideas from Measurement Robust Control
Barrier Functions (MRCBFs) that enforce the robust safety
constraint against the state prediction error. Specifically, we
bound the state prediction error in connection with the input
delay estimation error and incorporate the worst case error
bound into the safety constraint. The proposed method is
verified in the simulations under the connected automated
vehicles scenario.

I. INTRODUCTION

With the increasing demand for automated system appli-
cations in urban settings, the importance of systems with
safety-critical control has increased. The frameworks to
ensure safety have been studied in the context of forward
invariance through Control Barrier Functions (CBFs) [1],
CBFs-based Quadratic Programs (CBFs-QP) [2], Robust
adaptive CBFs (RaCBFs) [3], reachability-based approaches
[4], and predictive safety control [5] in delay-free systems.
However, time delays occur in many real implementations
such as a connected automated truck system [6], trajectory
tracking [7], and bilateral force teleoperation [8] with unsafe
behaviors, which cannot be addressed efficiently with the
delay-free model-based safety-critical controllers. In this
vein, the safety in the systems subject to the delays presents
unique challenges.

Several works have been recently proposed to ensure
safety in time-delayed systems. To address the safety in
systems with constant known input delay, CBFs have been
employed in linear systems [9], and nonlinear systems [10],
[11] integrated with the state predictor feedback proposed
by [12]. Additionally, the effectiveness of the CBFs-based
synthetic framework has been explored in dynamic envi-
ronments [13]. Furthermore, Tunable Input-to-State-Safety
CBFs (Tissf-CBFs) [14] have been leveraged to minimize
safety violations in the presence of input disturbances, and
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PredictionHistory

Fig. 1: Illustration of the state predictions on each side:
history and prediction. x̂(1, t, D̂(t)) is the estimated current
state during the past interval from −β to 0. It is used to
estimate a constant input delay by minimizing the error from
x(t). The estimated input delay is subsequently leveraged to
predict the future state at the time, t+D. The predicted state,
x̂p is finally used to compensate for the effect of the input
delay and ensures robust safety.

Tissf-CBFs are combined with the state prediction feedback
control to ensure safety in the presence of input delay and
show the successful performance in the connected automated
vehicles system [6]. Moreover, the safety with known time-
varying input delay is also addressed in the state prediction
feedback controller-based framework proposed by [15].

In the context of ensuring safety with unknown input
delays, recent studies have introduced CBFs with Integral
Quadratic Constraints (IQC) [16] as a tool to bound unmod-
eled dynamics subject to bounded unknown input delays to
ensure safety. Furthermore, tube-based CBFs [17] extended
from the IQC-based tube approach allow to design the robust
safety-critical controller subject to the unknown input delays.

In the scope of estimating the delays, various delay
adaptation methods have been proposed in linear [18], [19]
and nonlinear systems [20], [21], [22]. Especially, the delay
adaptive controller combined with the estimation of input
delay based on the state predictor-based approach [22]
successfully demonstrates the local input-to-state stability
in a robot manipulator. However, adaptively estimating the
unknown input delay and combining it with safety-critical
control design has not been studied actively.

In this paper, we propose a robust safety-critical control
framework with delay adaptation in a synthetic fashion. The
main contributions of this work are twofold. Firstly, we pro-
pose a robust safety-critical control framework with the delay
adaptation method [22], inspired by measurement-robust
CBFs [23]. This leads to the achievable robust safety in
the presence of the unknown constant input delay. Secondly,
we evaluate the proposed safety-critical control framework
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in the numerical simulations under the connected automated
vehicles scenario.

The paper is organized as follows. Section II describes the
problem resolved in the paper and Section III introduces the
concepts of CBF frameworks and the input delay estimation.
The proposed method is provided in Section IV and presents
the proof of the safety. Subsequently, we apply the proposed
method to connected automated vehicles and provide the
results of simulation in Section V. Finally, conclusion is
presented in Section VI.

II. PROBLEM FORMULATION

Consider the following control affine system with input
delay D > 0:

ẋ = f(x) + g(x)(u(t−D)), (1)

where x ∈ X ⊂ Rn is the system state, f : X → Rn

and g : X → Rn are locally Lipschitz continuous functions,
u ∈ U ⊂ Rn represents a control input, and D ∈ [D,D] is
a bounded input delay.

There are several methods to ensure the safety of system
(1) under the assumption that the input delay is known [13],
[15]. However, the existing methods cannot easily ensure the
system’s safety subject to the unknown input delay. In this
paper, we estimate the unknown constant input delay in an
adaptive scheme and apply it to ensure that (1) is safe; the
following problem will be solved:

Problem 1: Consider a control system (1) where D is an
unknown but bounded constant delay. Design a control input
u ∈ U that renders the system (1) safe with respect to a
given set S ⊂ X .

The proposed solution to Problem 1 enforces robustness
against an input delay into a safety constraint, inspired by
the idea of Measurement Robust Control Barrier Function
(MRCBF) [23], while combining the delay estimator [22]
in the safe controller design. The proposed barrier function
is called Delay adaptive CBF (DaCBF) and is presented in
Section IV.

III. PRELIMINARIES

This section contains background information on control
barrier functions and input delay estimation.

A. Safety in Delay-Free System

Consider the following delay-free control affine system:

ẋ = f(x) + g(x)u, (2)

where x ∈ X ⊂ Rn is the state and u ∈ U ⊂ Rm is the
control input. We define a set

S = {x ∈ X | h(x) ≥ 0}, (3)

where h : X → R is a continuously differentiable function.
The system (2) is safe w.r.t S if S is forward invariant.

Theorem 1 ([1]): The function, h is a Control Barrier
Function (CBF) for the system (2) if there exist a control
input u and an extended class Ke

∞ function α such that:

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −α
(
h(x)

)
∀x ∈ S. (4)

If h is a CBF for system (2) then the system is safe w.r.t S.

B. Safety in Systems with Known Input Delay
Consider system (1), if the input delay is known, then

safety is achieved for (1) based on the following:
Theorem 2 ([13]): The function h is a CBF for the system

(1) if there exist control input u(t) and an extended class Ke
∞

function α such that for all x ∈ S:

sup
u∈U

[Lfh(xp) + Lgh(xp)u(t)] ≥ −α
(
h(xp)

)
, (5)

where xp = x(t+D) is the state prediction. If h is a CBF
for the system (1), then the system is safe w.r.t S for all
t ≥ D if x(τ) ∈ S,∀τ ∈ [0, D].

C. Safety in Erroneous State Measurement
Let a state-dependent measurement be:

z = p(x), (6)

where p : Rn → Rk is locally Lipschitz continuous function,
and k is the dimension of measurement. We assume that there
is the deterministic relationship between z and x, and from
(6), let a locally Lipschitz continuous function, q be:

q(z) = x. (7)

Since we have imperfections in (7) in many applications, we
assume that the estimate of the state can be defined:

x̂ = q̂(z) = x+ e(x) (8)

where e : Rn → Rn is an unknown uncertainty with upper
bounds. Subsequently, the following pointwise set of the state
is considered:

X (z) = {x ∈ Rn | ∃ e ∈ E(z) s.t. x̂ = x+ e}. (9)

where E : Rk → P(Rn) is a set-valued function with the
power set, P .

Definition 1 ([23]): The continuously differentiable func-
tion h is a MRCBF for (2) on S with parameter function
(a, b) : Rn → R2

+ if there exists an extended class Ke
∞

function α such that for all z, x̂ ∈ S:

sup
u∈U

[Lfh(x̂) + Lgh(x̂)u(t)− (a(z)+b(z)||u(t)||)]

≥ −α
(
h(x̂)

)
. (10)

Theorem 3 ([23]): Let h be a MRCBF for the system (2).
Assume the functions Lfh, Lgh, and α ◦ h are Lipschitz
continuous on S with Lipschitz coefficients LLfh,LLgh,
and Lα◦h, respectively. Further assume there exists a locally
Lipschitz function η : Rk → R+ such that maxe∈E(z) ||e|| ≤
η(z) for all z ∈ p(S). Then, any locally Lipschitz continu-
ous controller u satisfying:

Lfh(x̂) + Lgh(x̂)u(t)− (a(z)+b(z)||u(t)||)
≥ −α

(
h(x̂)

)
, (11)

where a(z) = η(z)(LLfh + Lα◦h) and b(z) = η(z)LLgh,
renders (2) safe w.r.t S for all t ≥ 0.
In our case from Problem 1, we can measure all states, thus
p is an identity matrix (n = k), and additionally ||e|| will
be globally bounded in the proposed method.
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D. Input Delay Estimation

To estimate input delay, we predict the state of the system
(1) within the interval from t−β to t where β > 0 such that
for D̂(t) [22]:

x̂(δ, t, D̂(t)) = x(t− β) + β

∫ δ

0

f0(x̂,up)dy (12)

with f0(x̂,up) = f(x̂) + g(x̂)up,

where up(δ, t, D̂(t)) = u(t− D̂(t)+β(δ− 1)), δ ∈ [0, 1].
By using the fact that x̂(1, t, D̂(t)) should be equal to x(t) if
D̂(t) converges to D, we define the following cost function
to derive an adaptation law based on a gradient descent
approach [22]:

min
D̂

J =
1

2

∣∣∣∣∣∣x̂(1, t, D̂(t))− x(t)
∣∣∣∣∣∣2. (13)

Taking the gradient of the cost function (13), the following
equation is derived:

∂J

∂D̂(t)
(t, D̂(t)) =

(
x̂(1, t, D̂(t))− x(t)

)⊤ ∂x̂

∂D̂
(1, t, D̂(t))

(14)
with the estimator for the input delay proposed by [22] as
follows:

˙̂
D(t) = γProj[D,D]

{
D̂(t), ρD(t)

}
(15)

with

ρD(t) =
− ∂J

∂D̂
(t, D̂(t))

1 +
∣∣∣∣∣∣ ∂x̂

∂D̂
(1, t, D̂(t))

∣∣∣∣∣∣2 , (16)

where γ > 0 is the adaptation rate of the estimator, and
Proj[a,b] is the general project operator between the range
[a, b] to define a threshold of the estimated input delay. See
[22] for the detailed assumptions and proofs for conver-
gence.

IV. PROPOSED METHOD

In this section, we show how safety guarantees can be
ensured in the presence of the unknown constant input delay.

A. State Prediction Error

The following presents a bound on the state prediction
error, when the input delay is not known exactly.

Theorem 4: Let trajectory x : R+ → Rn be the solution
of (1) from initial condition x(0) ∈ Rn and y : R+ → Rn

be the solution of

ẏ = f(y) + g(y)u(t− D̂), (17)

from initial condition y(0) = x(0), where Lf and Lg are
Lipschitz constants of f and g respectively and

||u(t−D)− u(t− D̂)|| ≤ ϵmax, ϵmax ∈ R+. (18)

The prediction error e(t) = x(t) − y(t) for all t ≥ 0 is
bounded as:

||e(t)|| ≤ ϵmax

∫ t

0

ea(t−τ)||g(y(τ))||dτ, (19)

where a = Lf +Lg(umax + ϵmax), and ||u(t)|| ≤ umax for all
t ≥ 0.

Proof: The dynamics of the prediction error is com-
puted from (1) and (17) as:

ė = f(x)− f(y) + (g(x)− g(y))u(t−D) + g(y)ϵ (20)

where ϵ = u(t−D)−u(t−D̂). Since f and g are Lipschitz,
the prediction error is bounded as

||ė(t)|| ≤ Lf ||e(t)||+ Lg(umax+ϵmax)||e(t)||
+ ||g(y(t))||ϵmax, (21)

which is equivalent to

||ė(t)|| ≤ (Lf + Lg(umax + ϵmax))||e(t)||+ ||g(y(t))||ϵmax.
(22)

By the comparison lemma, it is seen that e(t) can be bounded
by the solution to a linear differential equation with zero
initial condition, since e(0) = 0, i.e.

||e(t)|| ≤ ϵmax

∫ t

0

ea(t−τ)||g(y(τ))||dτ︸ ︷︷ ︸
emax(t)

(23)

where a = Lf + Lg(umax + ϵmax).
It should be noted that the following state estimation error
should be considered ē(t) = x(t+D)−y(t+ D̂); thus, the
previous result is extended as follows.

Corollary 1: Let trajectory x : R+ → Rn be the solution
of (1) from initial condition x(0) ∈ Rn and y : R+ → Rn

be the solution of (17) from initial condition y(0) = x(0)
and let the delay estimation error be bounded by D̃max. Then
the state estimation error x(D)− y(D̂) is bounded as:

||x(D)− y(D̂)|| ≤ emax(D̂ + D̃max) + ∆ymax, (24)

where emax(D̂ + D̃max) is given in (23) and

∆ymax = max
D̃∈[−D̃max,D̃max]

||y(D̂ + D̃)− y(D̂)||. (25)

Proof: The prediction error is rewritten by adding and
subtracting y(D)

x(D)− y(D̂) = x(D)− y(D) + y(D)− y(D̂) (26)

= ē(D) + y(D)− y(D̂). (27)

From (19), it is seen that the bound on the prediction error
is non-decreasing; hence,

||x(D)− y(D̂)|| ≤ emax(D̂ + D̃max) + ||y(D)− y(D̂)||.
(28)

Since D is not known, ||y(D)−y(D̂)|| is over-approximated
by using the bound on the delay estimation error

||x(D)− y(D̂)|| ≤ emax(D̂ + D̃max) + ∆ymax (29)

where

∆ymax = max
D̃∈[−D̃max,D̃max]

||y(D̂ + D̃)− y(D̂)||. (30)
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B. Robust Safety with Delay Adaptation

This section presents a control barrier function for systems
with input delay similar to (5) in Theorem 2, where the state
prediction has a bounded error.

Consider the system (1), and the following state prediction:

ẋp = f(xp) + g(xp)u(t), (31)

where xp = x(t + D). Since the delay D is not known
exactly, it is only possible to compute the following:

˙̂xp = f(x̂p) + g(x̂p)u(t), (32)

where x̂p is the estimated state prediction with delay estimate
D̂ given by (15):

x̂p = x(t+ D̂(t)) = Ψ(ϑ,x(t),ut), ϑ ∈ [0, D̂(t)]. (33)

Ψ(ϑ,x(t),ut) is the forward integration of the system de-
fined as:

Ψ(ϑ,x(t),ut) = x(t) +

∫ ϑ

0

(
f(Ψ(y,x(t),ut))

+ g(Ψ(y,x(t),ut))ut(y − D̂(t))
)
dy, (34)

where ut is the input history defined by ut(s) = u(t +
s), s ∈

[
− D̂(t), 0

)
.

In the following, we provide a condition under which
safety is guaranteed for (1) in the presence of the unknown
input delay, despite an erroneous state prediction defined as:

x̂p = xp + ep, (35)

where a bound on ep is provided in Corollary 1.
Definition 2: The continuously differentiable function h

is a Delay adaptive Control Barrier Function (DaCBF) for
(1) on S if ||u(t−D)− u(t− D̂)|| ≤ ϵmax, ||u(t)|| ≤ umax
for all t ≥ 0, and there exists function α ∈ Ke

∞ such that
for all x̂p ∈ S:

sup
u∈U

[Lfh(x̂p) + Lgh(x̂p)u(t)− d(t)] ≥ −α
(
h(x̂p)

)
, (36)

where

d(t) = (LLfh + Lα◦h)ep,max + LLghep,max||u(t)|| (37)

with ep,max = emax(D̂+D̃max)+∆ymax given in Corollary 1.
Since we bound the error, ep between x̂p and xp according
to Corollary 1, the following proposition is obtained:

Theorem 5: Let h be a DaCBF, and the functions
Lfh, Lgh, and α◦h are Lipschitz continuous on S with Lip-
schitz coefficients LLfh,LLgh, and Lα◦h, respectively. Then,
any locally Lipschitz continuous controller u satisfying:

Lfh(x̂p) + Lgh(x̂p)u(t)− d(t) ≥ −α
(
h(x̂p)

)
, (38)

where d(t) = (LLfh + Lα◦h)ep,max + LLghep,max||u(t)||,
renders the system (1) safe with respect to S such that
∀t ≥ D.

Proof: We have a candidate control barrier function
and its Lie-derivative:

ḣ(x) = Lfh(x) + Lgh(x)u(t−D), (39)

and with the accurate state prediction, the following equation
is obtained:

ḣ(xp) = Lfh(xp) + Lgh(xp)u(t). (40)

We show the following necessary and sufficient condition
for forward invariant of S:

ḣ(xp) + α(h(xp)) ≥ 0. (41)

However, since we do not know the true input delay, it is not
possible to know xp. Instead, we can introduce the estimated
state prediction, (35) with the error bound, (24). If there exist
the the functions Lfh, Lgh, and α ◦ h that are Lipschitz
continuous on S with Lipschitz coefficients LLfh,LLgh, and
Lα◦h, then the following inequalities are derived:

ḣ(xp) + α(h(xp))

≥ −||Lfh(xp)|| − ||Lgh(xp)||u(t)− ||α(h(xp))||
≥ ||Lfh(x̂p)||+ ||Lgh(x̂p)||u(t) + ||α(h(x̂p))|| − de(t)

≥ Lfh(x̂p) + Lgh(x̂p)u(t) + α(h(x̂p))− d(t) ≥ 0 (42)

where de(t) = (LLfh+Lα◦h)||ep||+LLgh||ep||||u(t)||, and
d(t) = (LLfh + Lα◦h)ep,max + LLghep,max||u(t)||.

Since (36) and (38) hold, which ensures the last inequality,
(42); thus the system (31) is safe w.r.t S such that ∀xp(t) ∈
S,∀t ≥ 0. This also implies that x(t) ∈ S,∀t ≥ D by
Theorem 2.

We formulate the following Second-Order Cone Program-
ming (SOCP) optimization problem endowing safety guar-
antees in the presence of the unknown input delay as:

usafe = argmin
u∈U

1

2
||u− unominal||2 (43)

s.t. Lfh(x̂p) + Lgh(x̂p)u(t)− d(t) ≥ −α
(
h(x̂p)

)
,

where d(t) = (LLfh + Lα◦h)ep,max + LLghep,max||u(t)||.

V. SIMULATION RESULTS

In this section, we verify the proposed method in an
application where a connected automated truck should follow
a lead vehicle, while keeping the proper distance between the
two vehicles. The inter-vehicle communication delay causes
an input delay in the truck’s system, and the input delay in
the system depends on the communication quality as well.
Therefore, it is reasonable to assume that we have no prior
knowledge of the input delay. To compare between baselines
and the proposed method, we follow the system model,
safety regulation, and scenario (e.g. the lead car makes the
emergency stop) provided by [6].

We carry out two simulations; the existing methods with-
out delay adaptation are simulated where the initial input
delay used for the state prediction is assumed under 20%
of the true delay, D = 0.5 seconds, and the proposed
method with delay adaptation is verified, while showing the
performance of the delay estimator. In the second simulation
we assume that the initial input delay estimate is zero.
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(a) (b) (c)

(d) (e) (f)

Fig. 2: The plots show the performances of each safety-critical control and delay estimator in the presence of unknown input
delay. Truth (solid black line) describes the safety-ensured trajectories for the delay-free system with a normal CBF. (a)
and (d) show the performances of existing methods without delay adaptation and ours with delay adaptation, respectively.
(b) and (e) show the designed safety control inputs from existing methods and ours, respectively. (c) and (f) present the
estimated state predictions of each method, and known (dashed green line) is the true state prediction for all t ≥ D when
we know the true input delay in the system.

A. Application to Connected Automated Vehicle Control

Consider the following control affine system dynamics
with input delay:

ẋ =

 ξ̇
v̇
v̇L

 =

vL − v
0
aL


︸ ︷︷ ︸

f(x)

+

01
0


︸︷︷︸
g(x)

u(t−D), (44)

where ξ is the distance between two vehicles, v is the
speed of the follower truck, and vL, aL are the speed and
acceleration of the lead vehicle, respectively. The safety
regulation is defined as follows:

h(x) = ξ − ξsf − Tv, (45)

where ξsf is a minimum standstill distance, and T is time
headway. We use the following nominal controller provided
by [6]:

unominal = A(V (ξ)− v) +B(W (vL)− v), (46)
V (ξ) = min{k(ξ − ξst), vmax},

W (vL) = min{vL, vmax},

where A is a distance gain, and B is a velocity gain, and
ξst is a safe standstill distance, and V (·),W (·) are the range
and speed policy, respectively.

Fig. 2 shows the performances of each safety-critical
control in the scenario where the lead vehicle makes a

sudden emergency brake. We first simulate Tissf-CBF [6]
and MRCBF [23] without delay adaptation as baselines. As
shown in Fig. 2a, Tissf-CBF violates the safety even if its
safety constraint includes robustness against the effect of
the input delay. The effect is encapsulated into an input
disturbance in the system, so it is not able to deal with the
uncertainty caused by the state prediction error in the safety
constraint. Furthermore, the putative input delay has 80% of
the error from the true delay in the simulation, which leads
to a large state prediction error in the prediction feedback
controller as shown in Fig. 2c and Fig. 2f. The designed
safety-critical control inputs without delay adaptation are
shown in Fig. 2b. On the other hand, MRCBF is designed to
be robust against the state uncertainty in its safety constraint
based on Lipschitz coefficients, which makes the system
more conservative than Tissf-CBF. Like Tissf-CBF, MRCBF
also degrades the performance of the controller due to
inaccurate state prediction. Overall, without delay adaptation,
it shows that the state prediction with inaccurate input delay
has a large error as shown in Fig. 2c and Fig. 2f, so it is
difficult to ensure safety guarantees in Tissf-CBF and achieve
the desired operations in both cases.

While the existing methods above fail to satisfy safety and
the desired system behaviors simultaneously, the proposed
method, DaCBF allows the system to not only ensure the
safety guarantees, but also recover quickly the aspect of
the delay-free system’s behaviors as shown in Fig. 2d and
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Fig. 3: The plot shows input delay estimation: the estimated
input delay (solid red line) and the true input delay (dashed
black line).

2e. From t = 0 to the time when the estimated delay
converges to the true delay as shown in Fig. 3, it is observed
that DaCBF does not violate the safety regulation since we
have the robustness in the safety constraint. Meanwhile, the
estimated state predictions, x̂p(t + D̂(t)) for all t ≥ D is
quickly getting accurate as shown in Fig. 2c and 2f compared
to others. After the estimated input delay converges to the
true delay, the effect of the input delay is compensated by
the state prediction feedback controller. However, the slight
conservative behavior is still observed due to the robustness
that we initially enforced in the safety constraint.

VI. CONCLUSION

This paper investigated robust safety-critical control de-
sign for the system with unknown but bounded constant
input delay. We proposed a method for ensuring safety
by combining delay adaptation and a robust CBFs-based
scheme. The input delay was estimated to predict the future
state which was to compensate for the effect of the inherent
input delay. We subsequently established the worst case
bound of the state prediction error in the safety constraint.
We provided the proof of the bounded error coupled with the
delay estimation error and simulated the proposed method in
the connected automated vehicles system. The results showed
that the proposed method allowed for the system to not only
be safe, but also compensate the impact of the input delay,
outperforming the existing works. Our future work will cover
the analysis of conservatism.
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