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Abstract— Echo state network (ESN) implements an alternative
paradigm called reservoir computing to train recurrent neural
networks (RNNs), where internal weights are randomly generated
and kept fixed, and only readout weights need to be trained, which
greatly reduces the training complexity of RNNs. ESN not only
facilitates the practical implementation of RNNs but also shows
superior performance over fully trained RNNs across a range
of applications. However, the conventional ESN suffers from the
drawbacks of stringent conditions for weight convergence and
slow convergence speed. This paper proposes a memory regressor
extended learning method to update the readout weights of ESNs.
By constructing and incorporating a generalized prediction error
based on regressor extension and filtering, the capacity of ESN
to utilize historical data can be greatly improved. In the discrete-
time domain, it is proven that exponential convergence of readout
weights is achieved under a condition termed interval excitation
that is strictly weaker than the classical condition of persistent
excitation. Simulation results on modeling a 10th-order nonlinear
autoregressive moving-average (NARMA) system have revealed
that the proposed approach accelerates weight convergence speed
almost ten times higher compared to the conventional ESN.

I. INTRODUCTION

Complex nonlinear systems, characterized by their typically
chaotic and unpredictable dynamics, exhibit multiple inter-
acting spatiotemporal scales that pose challenges to classical
numerical methods in terms of prediction and control [1].
Recurrent neural networks (RNNs) are a type of neural network
architecture that is well-suited for modeling and analyzing
spatiotemporal data. RNNs can capture temporal dependencies
and can be extended to incorporate spatial information, making
them effective in handling complex spatiotemporal patterns
[2]. By utilizing recurrent connections, RNNs can process
sequential data and retain information from previous time steps,
allowing them to capture the temporal dynamics of a nonlinear
system. This makes them particularly useful for tasks such
as time series prediction [3], speech recognition [4], natural
language processing [5], and robotics [6], where the order and
context of the data are important.
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The two mainstream training methods for RNNs currently
are backpropagation and reservoir computing (RC). Some
of the earlier approaches explore the potential of RNNs in
capturing temporal dynamics through the utilization of low-
dimensional RNNs [7], [8], but its effectiveness is limited
by the fact that gradients may vanish or explode during the
learning process, which can impede the network ability to learn
and predict. Some work [9], [10] extend long short-term mem-
ory to model and predict nonlinear systems, which partially
alleviates the issues. However, to the best of our knowledge,
these approaches have been used only on low-dimensional and
low-complexity systems. Several recent pieces of literature
demonstrate promising results for high-complexity systems
[11], [12]. Nevertheless, backpropagation and other applied
techniques can significantly increase the training complexity
of RNNs, leading to slower convergence speed.

RC offers a powerful approach to train RNNs, providing
insights into complex systems that exhibit high-dimensional
nonlinear dynamics. This study primarily concentrates on echo
state networks (ESNs) in the RC framework. ESNs typically
consist of three layers, i.e., input, reservoir, and output layers,
where the reservoir layer is the core component that maps input
signals into a higher dimensional space through nonlinear trans-
formations. This high-dimensional representation effectively
captures the spatiotemporal dynamic characteristics of complex
nonlinear systems. It should be noted that the reservoir layer is
not a conventional hidden layer in artificial neural networks,
as the parameters of the reservoir are randomly initialized
and remain unchanged throughout the entire training process.
Only the readout layer needs to be trained to enable the ESN
model to perform specific tasks. This structural design gives
ESNs the advantages of fast training and lower computational
complexity [13]. The universal approximation properties of
ESNs have been shown in [14], [15]. Zhang et al. [16] provided
an analytical explanation for the observation that echo states
are obtained in practice when the spectral radius of the reservoir
weight matrix is smaller than one.

The utilization of the pseudo-inverse is a common method
for training ESNs. Nevertheless, this method can potentially
result in ill-posed problems and large output weights, which
may weaken the generalization capability of ESNs. As a result,
the behavior of the trained ESN may differ significantly when
tested with data that deviates slightly from training data [17].
Truncated singular value decomposition [18] and Tikhonov-
type regularization [19] have been proposed as regularization
techniques for learning readout weights. Training algorithms
based on gradient descent [1], [20] and recursive least squares
(RLS) [21], [22] have demonstrated good results in modeling
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Fig. 1. The structure and computational process of MRE-ESN.

nonlinear systems. However, these methods do not further
process prediction errors, resulting in ESNs not fully harness-
ing the historical information across time scales provided by
recurrent connections in the reservoir. Some research has made
improvements to RLS-based FORCE learning using memory
regressor extension (MRE), but none of these studies provide
proof regarding parameter convergence [23]–[25].

The convergence of parameter estimation is guaranteed by a
widely recognized condition termed persistent excitation (PE)
[26]. However, PE requires sufficient training data containing
rich spectrum information all the time, which is difficult to
satisfy in practice. Even if the PE condition is fulfilled, the
speed of parameter convergence in gradient-based estimation
largely depends on the excitation strength, leading to a slow
learning pace [27]. This paper presents an MRE-enhanced
learning method for training readout weights of the ESN. A
generalized prediction error is defined to retain past excitation
information by using regressor extension and filtering, and both
the general and generalized prediction errors act synchronously
on the weight-updating process. We prove in the discrete-time
domain that our method can converge under a relaxed interval
excitation (IE) condition that greatly relaxes PE. Compared
with gradient-based estimation, this approach offers improved
convergence during training, manifested as faster convergence
speed and relaxed excitation requirement.

Notations: R, R+, Rn, and Rm×n denote the spaces of real
numbers, positive real numbers, real n-vectors, and real m×n-
matrices, respectively, N+ denotes the set of positive natural
numbers, ∥x∥ denotes the Euclidean norm of x ∈ Rn, Ωc :=
{x|∥x∥ ≤ c} denotes a ball of radius c ∈ R+, I refers to an
identity matrix and xi refers to the ith element of x, L∞ refers
to the space of bounded signals, where i, m, n ∈ N+.

II. THE PROPOSED METHOD

A. Echo State Network

A block diagram of the proposed MRE-ESN is shown in Fig.
1, where the reservoir consists of a collection of recurrently
connected neurons, and the connectivity structure is usually
random and sparse. The overall dynamics of the reservoir are
driven by current inputs and past information, where dynamics
containing high-dimensional information are parsed out at the
readout layer. It is worth noting that the system modeling
problem discussed in this study is in a discrete context. At the
time step k, the reservoir state x(k) ∈ RN is determined by

a combination of input stimuli, internal neuronal activity, and
feedback loop, which can be expressed by

x(k) = ϕ
(
Winu(k) +Wx(k − 1) +Wfbz(k − 1)

)
(1)

where ϕ(k) = tanh(x(k)) is an activation function, Win ∈
RN×P is a connection matrix between the input and reservoir,
u(k) ∈ RP is the input, W ∈ RN×N is a connection matrix
within the reservoir, and Wfb ∈ RN is a connection vector
from the readout layer to reservoir. According to the concepts
of ESNs, these matrices are randomly generated and remain
unchanged during operations.

The sole trainable weight Ŵout ∈ Ωcw ∈ RN represents the
connection vector between the reservoir and the readout layer,
where cw ∈ R+ is a certain constant. The reservoir activation
r(k) ∈ RN is given by the weighted sum of its historical value
and current reservoir state as follows:

r(k) = (1− α)r(k − 1) + αx(k) (2)

where α ∈ (0, 1] is a constant leaky rate used to control the
learning process of reservoir activation. The network output
z(k) ∈ R is represented as follows:

z(k) = rT (k)Ŵout(k − 1). (3)

At each time step k, the sampled z(k) utilizes the readout
weight Ŵout(k − 1) from the previous k − 1 as Ŵout(k) has
not yet been updated at this point.

Consider a nonlinear dynamics problem that aims to enable
z(k) to replicate the target dynamics

f(k) = rT (k)Wout (4)

where Wout ∈ RN is an ideal weight. Let W̃out := Wout −
Ŵout ∈ RN be a weight estimation error. At the time step k, a
prediction error e(k) ∈ R is given as follows:

e(k) = f(k)− rT (k)Ŵout(k − 1). (5)

After obtaining (5), updating Ŵout using the gradient descent
approach is straightforward. However, this approach has certain
limitations. First, the convergence of Ŵout depends on the PE
condition for training data and network activations. In addition,
the convergence speed is relatively slow.

B. MRE-Enhanced Method

To solve the aforementioned limitations, an MRE-enhanced
algorithm is proposed to train ESNs as follows. We construct a
new extended regression equation via linear filtering operators
with memory. Let L(z) := λ

1−(1−λ)z−1 denote a discrete-time
stable filter. In order to facilitate the theoretical analysis, we
provide the following definitions.

Definition 1: A bounded signal Φ(k) ∈ RN is of PE if there
exists σ ∈ R+ such that L(z)[Φ(k)ΦT (k)] ≥ σI, ∀k ≥ 0.

Definition 2: A bounded signal Φ(k) ∈ RN is of IE if there
exist kc, σ ∈ R+ such that L(z)[Φ(k)ΦT (k)] ≥ σI, k = kc.

Define an excitation matrix to be Q(k) := L(z)[r(k)rT (k)].
Multiplying each side of (4) by r(k) and applying L(z) and
Q(k), one gets an extended prediction equation

Y (k) := L(z)[r(k)f(k)]. (6)
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Based on (6), define a generalized prediction error

E(k) :=

{
Y (k)−Q(k)Ŵout(k), k < kc

Y (ke)−Q(ke)Ŵout(k), k ≥ kc
(7)

with ke := argmaxτ∈[kc,k]∩Nσmin(Q(τ)). The current maxi-
mal exciting strength is given by σc(k) := σmin(Q(ke)), k ≥
kc. The readout weight Ŵout is updated by

Ŵout(k + 1) =Ŵout(k) +
1

2
R−1(k)r(k)e(k)

+
1

2
Λ−1(k)E(k) (8)

where R(k) := I + r(k)rT (k) and

Λ(k) :=

{
I +Q(k), k < kc

I +Q(ke), k ≥ kc

are matrix normalization gains.
By incorporating the original prediction error and the gener-

alized prediction error, as shown in (8), our learning algorithm
has the superiority of utilizing the past activation history of the
extended regressor. Theoretically, we will demonstrate that the
proposed method can converge under the IE condition, which
is less stringent than the PE condition, as follows.

Theorem 1: Let [0, kf) with kf ∈ R+ denote the maximal
iteration set of the existence of solutions of the system (2). For
any given initial readout weight Ŵout(0) ∈ Ωcw , the MRE-
enhanced parameter update law in (8) guarantees that:

1) Ŵout(k) and e(k) are of L∞, ∀k ≤ kf ;
2) W̃out(k) → 0 exponentially at k ≥ kc as k → ∞, if the

IE condition Q(kc) ≥ σI in Definition 2 is satisfied for
certain constants kc, σ ∈ R+.

Proof. Based on (8), W̃out is represented by

W̃out(k + 1) =Ŵout(k + 1)− Ŵout(k)

=− 1

2
R−1(k)r(k)e(k)− 1

2
Λ−1(k)E(k)

=
[
I − 1

2
R−1(k)r(k)rT (k)

− 1

2
Λ−1(k)Q(k)

]
W̃out(k). (9)

Consider a Lyapunov function candidate

V (k) = W̃T
out(k)W̃out(k). (10)

According to (9) and (10), one has

V (k + 1) =W̃T
out(k + 1)W̃out(k + 1)

=W̃T
out(k)[I −

1

2
R−1(k)r(k)rT (k)

− 1

2
Λ−1(k)Q(k)]2W̃out(k). (11)

Bringing R−1(k) and Λ(k) into (11), one gives

0 < I − 1

2
R−1(k)r(k)rT (k)− 1

2
Λ−1(k)Q(k) < I (12)

to get V (k + 1) ≤ V (k), which implies W̃out(k), Ŵout(k) ∈
L∞, and hence, e(k) ∈ L∞ on k ∈ [0, kf).

Next, consider the convergence problem under the IE con-
dition for k ≥ kc, i.e., there exist kc, σ ∈ R+ such that
Q(kc) ≥ σI . It follows from (12) that[

I − R−1(k)r(k)rT (k)

2
− (I +Q(ke))

−1Q(ke)

2

]2
≤
[
I − 1

2
(I +Q(ke))

−1Q(ke)
]2

=
[(
I +Q(ke)

)−1(
I +Q(ke)−

1

2
Q(ke)

)]2
=
(
I +Q(ke)

)−2(
I +

1

2
Q(ke)

)2
=
(
I +Q(ke)

)−2
[1
2
I +

1

2

(
I +Q(ke)

)]2
=
1

4
[I + (I +Q(ke))

−1]2. (13)

As Q(ke) ≥ Q(kc) ≥ σI , one has

V (k + 1) ≤ 1

4

[
1 + (1 + σ)−1

]2
W̃T

out(k)W̃out(k)

=
1

4

[
1 + (1 + σ)−1

]2
V (k) (14)

with 0 < 1
4 [1 + (1 + σ)−1]2 < 1, which implies that W̃out(k)

→ 0 exponentially for k ≥ kc.

III. NUMERICAL VERIFICATION

In this section, numerical verification is conducted to show
the benefits of the proposed MRE-based learning method. The
task is training the readout weight Ŵout to make the ESN
output z(k) follow a nonlinear dynamic model. We validate the
superiority of the proposed method on the 10th-order nonlinear
autoregressive moving average (NARMA) system.

A. Simulation Settings

Simulations are carried out in the MATLAB software, where
the average results of 20 runs are presented for each trial. We
randomly initialize the input weight Win and the feedback
weight Wfb following uniform distributions with Win,Wfb ∼
U(−1, 1). The reservoir connection weight W is scaled by
a chaotic degree g ∈ R+ to make the reservoir chaotic [28].
The computational capabilities of ESNs may be enhanced if
reservoir connections are at the edge of chaos [29].

The reservoir consists of N = 600 neurons. The hyperpa-
rameter p ∈ (0, 1) determines the sparsity of interconnections
between neurons within the reservoir. If the value is too small,
it will lead to a less expressive network. If the value is too
large, it will make recognizing network output patterns difficult.
We employ grid search to determine the ideal connectivity
sparsity p within the reservoir. The baseline is the original
gradient descent method in [30], which is a common form of
the gradient descent method:

Ŵout(k + 1) = Ŵout(k)−
r(k)

γ + |r(k)|
e(k) (15)

where γ ∈ R+ is the learning rate. This method solely relies
on the original prediction error.
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(a) The baseline method (b) The MRE-enhanced method

Fig. 2. Comparison of ESN fitting performance using baseline and the MRE-enhanced methods in the training and prediction phases. Top: Fitting curve of the
last 100 training epochs. Bottom: Fitting curve of the last 100 testing epochs.

B. 10th-Order NARMA System

The 10th-order NARMA system, which exhibits complex
behavior and nonlinearity, is often used as a benchmark in
nonlinear system identification and control. Here, we use it to
evaluate the performance of the proposed method in terms of
learning and prediction. The system is described by

f(k + 1) = 0.3f(k) + 0.05f(k)

9∑
i=0

f(k − i)

+ 1.5v(k − 9)v(k) + 0.1

(16)

where v(k) ∼ U(0, 0.5) and f(0) = 0.
For fair comparisons, we set most of the simulation parame-

ters the same as in [31], and select the parameters p, g, and γ
by a simple grid search. We generate 5,400 samples using (16),
with 3,000 samples allocated for training and 2,400 samples
for testing. After several rounds of the grid search, set p =
0.12, g = 4.0 for the proposed method and p = 0.10, g =
3.5, γ = 2.0 for the baseline. The readout weight Wout(0) is
initialized to 0. Similar to [31], normalized root mean square
error (NRMSE) as follows:

NRMSE = (

n∑
i=1

(fi − zi)
2/

n∑
i=1

(fi − f)2)
1
2

is applied as the metric to evaluate the performance.

C. Simulation Results

Simulation results of the baseline are shown in Fig. 2(a),
where the ESN output z(k) gradually matches the target f(k)
when the training starts. After training, the ESN approximates
the target system with low accuracy. Simulation results of
the proposed method are shown in Fig. 2(b). For better
visualization, we only present the last 100 epochs of the
training and prediction phases. The ESN output z(k) rapidly
approaches the target f(k), resulting in an overall improved
fitting performance. After training, the learned ESN keeps
precisely generating the target output on its own.

Simulation results about convergence speed are shown in
Fig. 3. For the baseline, the readout weight norm ∥Ŵout∥ does
not converge to a constant after learning, and the NRMSE
continues exhibiting a decreasing trend even after the final
3,000 epochs of training. For the proposed method, ∥Ŵout∥
converges to a constant after about 1,500 epochs. In the
later stages of training, the NRMSE remains relatively stable.
To further illustrate the convergence of the readout weight
Ŵout in individual neurons, we randomly select 8 neurons
to observe their evolution. Fig. 4(a) illustrates that during
the entire training process of the baseline, the 8 elements of
Ŵout change rapidly in the early stages and then gradually
stabilize. Nevertheless, they do not converge to constants. Fig.
4(b) indicates that the 8 elements of Ŵout essentially stabilize
and converge after the 1,500th epoch for the proposed method.

It is evident that the proposed method exhibits significantly
faster convergence compared to the baseline without the gener-
alized prediction error. With additional training, the baseline
is expected to reach a state of basic convergence around the
14,000th epoch. The specific comparison results are displayed
in Table I. The proposed method not only outperforms the
baseline in modeling accuracy but also achieves a convergence
speed almost 10 times faster than the baseline.

IV. CONCLUSIONS

This paper has proposed an MRE learning method for ESNs
and has shown exceptional modeling performance for nonlinear
dynamical systems. In particular, the proposed method can
achieve parameter convergence under the IE condition that

TABLE I
SIMULATION COMPARISONS ON NONLINEAR DYNAMICS MODELLING

Methods RNMSE Convergence Time

Gradient descent method in [30] 6.27e-04 158.60s

The proposed method 8.75e-05 16.56s
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(a) The baseline method (b) The MRE-enhanced method

Fig. 3. Comparison of ESN training performance using baseline and the MRE-enhanced methods. Top: The norm change of the readout weight Wout. Bottom:
The variation in performance (NRMSE) of nonlinear dynamics modeling.

(a) The baseline method (b) The MRE-enhanced method

Fig. 4. Comparison of the evolution in the readout weight Wout for eight randomly selected readout neurons using baseline and MRE methods. The horizontal
axis of the coordinate system refers to the training time step.

relaxes the strict PE condition. In simulation validation, the
proposed method unequivocally exhibits superior performance
in modeling nonlinear dynamical systems and achieves almost
10 times faster convergence than the conventional gradient
descent method on the 10th NARMA nonlinear system.
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