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Abstract— Pedestrian tracking using Light Detection and
Ranging (LiDAR) is important to avoid pedestrians for au-
tonomous vehicles. It is difficult, however, to measure the center
position of the pedestrian directly because the point cloud data
appears on the surface of the pedestrian facing the LiDAR. In
addition, the arms and legs often wobble during locomotion,
although the torso moves smoothly and wobbles less. Thus, in
this study, to estimate the center position of the pedestrian,
we approximate the torso as an ellipse model to represent the
pedestrian’s pose. Then, the point cloud on arms and legs that
largely fluctuates is eliminated by Random Sample Consensus
(RANSAC) by regarding them as outliers for the ellipse model.
In addition, we propose a novel method that combines Moving
Horizon Estimation (MHE) with maximum likelihood estima-
tion sampling consensus (MLESAC) to consider the motion
model of the pedestrian to prevent fitting failures. Experiments
show the advantages of the proposed method.

I. INTRODUCTION

In recent years, the role of autonomous vehicles in en-
vironments with pedestrians, for purposes such as mobility
support, has been anticipated [1], [2]. When navigating such
environments, it is crucial to avoid collisions with surround-
ing pedestrians, making pedestrian tracking essential. Partic-
ularly in confined spaces like indoors, precise estimation of
position and size is required [3]. Sensors commonly used for
pedestrian tracking include Light Detection and Ranging (Li-
DAR) and cameras. LiDAR, as shown in Fig. 1, can perform
360-degree volumetric measurements with a single device,
enabling accurate distance measurements to irradiated points
compared to cameras which leads to many automated driving
research using them [4]–[7]. In research on pedestrian track-
ing using LiDAR [8], [9], the center of mass was determined
from the measured point cloud of the pedestrian’s contour,
estimating their position. While LiDAR can measure the
distance to the irradiated points and consequently the surface
of the illuminated pedestrian, directly measuring the center
position is challenging. Consequently, these studies had dis-
crepancies between the estimated center of the human body
and the point cloud’s center of mass, potentially leading to
failures in obstacle avoidance. Moreover, techniques utilizing
bounding boxes based on the measured point cloud of the
tracked pedestrians were proposed [10]–[13]. While these
methods consider the size of pedestrians through bounding
boxes, variations in the size of the bounding box occur
due to dynamically changing point clouds (PC) from arms
and legs. This results in fluctuations in the center position,
making accurate position estimation difficult. To address
such issues, Han et al. [14] provide an example of utilizing
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Fig. 1. Point-cloud data on pedestrian with front and top view.

Random Sample Consensus (RANSAC) to remove outliers,
demonstrating the effectiveness of RANSAC in generating
regression models for data with outliers. Similarly, in our
method, PC from arms were treated as outliers and excluded
by RANSAC. We performed circular approximations on
the torso, which exhibits less movement during walking
compared to arms and legs [15]. Subsequently, we proposed
a technique that estimates the calculated circle’s center and
radius using a Kalman filter (KF) with these values as
observations. However, discrepancies between the circle’s
center and the pedestrian’s center position arose due to the
mismatch between the circle and the torso shape. To address
this, the RANSAC model was modified from a circle to an
ellipse, and the torso was approximated with an ellipse for
tracking [16]. In that study, the ellipse’s center, orientation
angle, major axis, and minor axis, computed from RANSAC,
were used as observations and estimated using the Moving
Horizon Estimation (MHE) method, a model-based optimiza-
tion approach that accommodates observations at different
time steps over the horizon. This approach significantly
reduced the error between the estimated position and the
pedestrian’s center. Nonetheless, when approximating the
point cloud using RANSAC for each time step, there were
cases where the fit extended beyond the torso, resulting
in substantial errors as illustrated in Fig. 2(a). The main
problem with RANSAC itself is that it does not consider
the motion model of the pedestrian. Therefore, in this study,
we propose a method that employs MHE in RANSAC for 3-
D LiDAR pedestrian estimation. The evaluation function of
MHE can consider the pedestrian’s motion model, enabling
suppression of RANSAC’s ellipse approximations outside the
torso as shown in Fig. 2(b). The MHE evaluation function is
incorporated into the optimization calculations that generate
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candidates for the RANSAC ellipse model and choose the
one with the maximum likelihood. This ensures a high
likelihood of RANSAC choosing the correct inliers for state
estimation particularly when compared with conventional
RANSAC. The effectiveness of this proposed Moving Hori-
zon Estimation incorporated Maximum Likelihood Estima-
tion Sampling Consensus (MHE-MLESAC) is demonstrated
through real-world experiments.

(a) RANSAC

(b) MHE-MLESAC

Fig. 2. PC top view comparison of conventional RANSAC and MHE-
MLESAC at different times. RANSAC fails to fit the model properly with
the pedestrian at t = k − 1 whereas, MHE-MLESAC correctly fits them
because MHE-MLESAC increases the chance of proper generated models
of a moving pedestrian through motion model consideration of multiple
instances in horizon.

II. ESTIMATION TARGET

In this study, the model considers the torso of pedes-
trians as an ellipse, approximating their shape, as shown
in Fig. 3. The center coordinates of the torso, denoted as
(x, y), correspond to the center of the ellipse. The angle θ
represents the direction angle from the X-axis. Additionally,
the velocities in the X and Y directions are represented as vx
and vy , while ω represents the angular velocity, i.e. ẋ = vx,
ẏ = vy , and θ̇ = ω. The major and minor axes of the ellipse
are designated as α and β, respectively. For simplicity, we
assume the pedestrian motion is represented by a random
walk model with v̇x = nx, v̇y = ny , ω̇ = nω , α̇ = nα,
and β̇ = nβ where nx, ny , nω , nα, and nβ are the states’
respective random noises that obeys Gaussian distribution.
The state variable x is defined as:

x = [x, y, θ, vx, vy, ω, α, β]T. (1)

Using Euler approximation, we can get the following
discrete-time state space equation:

xk = Axk−1 + Gnk, (2)

where A ∈ R8×8 and G ∈ R8×5 are corresponding coeffi-
cient matrices. Subscript k represents the variable at discrete
time k. nk := [nx, ny, nω, nα, nβ ]T is a system noise vector
that obeys Gaussian distribution, i.e. nk ∼ N(0, Q), with
each velocity component being in the acceleration dimension
and the components of the major and minor axes being in the

Fig. 3. Pedestrian shape model approximated by ellipse with point clouds
observation. The turquoise ellipse is the pedestrian model and the red dots
represent point clouds.

velocity dimension. Additionally, Q ∈ R5×5 represents the
covariance matrix of the system noise. For the observation
of the target, eventhough 3-D LiDAR PC are used, we
only consider the PC’s x and y positions. We calculate the
deviation of individual LiDAR PC’s from the ellipse model
using (3):

si =

(
x̃i cos θ̂ + ỹi sin θ̂

α̂

)2

+

(
−x̃i sin θ̂ + ỹi cos θ̂

β̂

)2

−1,

(3)
where superscript i represents an index, x̃i and ỹi are
deviations of the ith PC Cartesian position from the ellipse
center where x̃i = xpc[i] − x and ỹi = ypc[i] − y

III. MOVING HORIZON ESTIMATION (MHE)

MHE is a model-based filter that calculates the optimal
state by taking into account measurements taken in the
past during a finite time period known as horizon, H .
By minimizing Mahalanobis distance of the noise, we can
estimate the maximum likelihood estimation of the target
state. Since the optimization is numerical, constraints can
also be considered to give realistic estimations based on
the system’s physical limitations [17], [18]. The evaluation
function usually consists of three main terms which are the
state error term, measurement error (innovation) term and
arrival cost:

J(x̂T−H+1:T ) =

T−1∑
k=T−H+1

||x̂k −Ax̂k−1||2(G†)TQ−1G†

+

T∑
k=T−H+1

||yk − h(x̂k)||2R−1

+ ||x̂T−H+1 − x−T−H+1||
2
(P−T−H+1)

−1 ,

(4)

where the current time is denoted as T , H represents the
horizon length, the hat symbol x̂ represents the optimization
variable and the subscript expression T −H + 1 : T means
from time k = T−H+1 until T . The first term represent the
state prediction error evaluating the Mahalanobis distance for
the system noise nTkQ

−1nk. nk = G†(x̂k−Ax̂k−1) where
G† represents the pseudo inverse matrix, given by G† =
(GTG)−1GT . The second term evaluates the Mahalanobis
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distance of the observation noise for the observation model
y = h(x) + ε where h is a vector valued function and ε is
the Gaussian measurement noise with covariance matrix R.
The third term represents the error of the optimization states
x̂T−H+1 to the apriori based on the past states x−T−H+1

where, P−T−H+1 represent the prior error covariance matrix
of the KF at time T −H + 1. In our study we run the KF
simultaneously with the MHE estimator to estimate x− and
P−. The optimization problem of MHE is to minimize J
with respect to x̂T−H+1:T .

IV. MLESAC FOR PEDESTRIAN PC FITTING

A. Overview of model estimation with MHE-MLESAC

To estimate the pedestrian in the presence of outliers,
we opted to use RANSAC as it could predict regression
models from an outlier present data set by considering the
highest inliers percentage [19]. However, sometimes general
RANSAC may generate a wrong model as it only prioritize
having the largest number of inliers. This may be reliable for
static cases but not robust in dynamic scenarios. To prevent
this, we incorporate MHE into RANSAC where motion
model of the pedestrian is also considered when choosing
inliers. We extend the RANSAC problem into a likelihood
maximization problem as it synergize with the MHE esti-
mator [20]. The Maximum Likelihood Estimation Sampling
Consensus (MLESAC) will choose models with the lowest
negative log-likelihood value. The idea of this method is
visualized in Fig. 4. The proposed method MHE-MLESAC
is similar to RANSAC where it would randomly sample
among the PC within the horizon to generate candidate states.
Afterwards, we will evaluate their respective negative log
likelihood values where the lowest valued candidate state
will be chosen. This should lead to more accurate model
estimations despite the presence of outliers. The generation
of candidate state and evaluation of the negative log like-
lihood value will be explained in Chapter IV-B and IV-C,
respectively.

Fig. 4. MHE-MLESAC of a moving pedestrian heading downwards. The
black dotted ellipse represents the real pedestrian. In the left side, poor
random sampled PC subset leads to a bad estimation. However, the right side
has better estimation because of good random PC samples. The estimation
is better because both distance of predictions and sampled point cloud is
nearer to the estimation, thus, MHE-MLESAC chooses the right side model.

B. Optimization problem for MHE-MLESAC

To establish an MHE that is capable of fitting the ellipse
model to the LiDAR PC, we modified the observation term
in (4) into (5).

J(x̂T−H+1:T ; Ψ,L)

=
1

H

T−1∑
k=T−H+1

||x̂k+1 −Ax̂k||2(G†)TQ−1G†

+
1

|Ψ|

T∑
k=T−H+1

R−1
∑
i∈Lk

(si)2

+ ||x̂T−H+1 − x−T−H+1||
2
(P−T−H+1)

−1 ,

(5)

where the second term represents the deviation between the
ellipse model and the PC Φpc

k := [xpck , y
pc
k ]T at each step.

Ψ is the randomly sampled PC subset Ψ ⊂ Φpc
T−H+1:T .

|Ψ| is the total number of sampled PC, Lk is an index
set corresponding to the elements of Ψ extracted from
Φpc
T−H+1:T , and (si)2 is the square of the PC deviation

defined in (3). In this case, the weight R−1 is a scalar. We
also normalized the first term by dividing with H to avoid
the term increasing disproportionately with H length. To
differentiate between the major and minor axes, a constraint
condition given by (6) is imposed between α̂k and β̂k:

α̂k ≥ β̂k. (6)

Furthermore, constraints on the upper and lower limits are
imposed on α̂k, β̂k, and θ̂k, as shown in (7), (8), and (9):

αmin ≤ α̂k ≤ αmax, (7)

βmin ≤ β̂k ≤ βmax, (8)

θ̂−k − θ
th ≤ θ̂k ≤ θ̂−k + θth, (9)

where αmin, βmin, αmax, and βmax are the minimum and
maximum allowable value for α̂k and β̂k, respectively.
They prevent from abnormal shrinking and expanding of
the ellipse. θ̂−k represents the prior estimate and θth is
the allowable rotation angle. (9) is used to ensure that
the ellipse’s orientation angle does not change significantly.
Also, to avoid the estimated ellipse center to be outside the
torso, (10) is also applied:

r̄pck ≤ r̂k, (10)

where r̄pck is the mean distance of the sampled PC subset
at time k and r̂k is the estimated distance of the pedestrian
center to the LiDAR at time k. The optimization problem of
the MHE-Ellipse is summarized as:

Optimization problem for MHE-Ellipse
minimize J in (5),
with respect to x̂T−H+1:T ,
subject to (6)(7)(8)(9)(10).
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C. Evaluation of candidate states

For the MLESAC, we will generate candidate states
x̂jT−H+1:T with the PC subsample set Ψj through MHE-
Ellipse where superscript j represents the index for each
sample. We will determine which candidate has the high-
est likelihood. Firstly, we obtain the inliers subset Υj

where Υj ⊂ Φpc
T−H+1:T . The subset Υj contains elements

Φ
pc[i]
T−H+1:T that have error |si| < dth where dth is the

threshold value. Afterwards, we compute the negative log
likelihood J using (5) where the arguments are x̂jT−H+1:T ,
Υj and Mj

k where Mj
k is an index set corresponding to the

elements of Υj extracted from Φpc
T−H+1:T . x̂jT−H+1:T that

produces J with the lowest value is chosen as the aposteriori
state because it minimizes a negative log-likelihood.

V. MOVING HORIZON ESTIMATION UTILIZING RANDOM
SAMPLE CONSENSUS (MHE-MLESAC)

The proposed method estimates the pedestrian ellipse
model from PC using MLESAC to evaluate the likelihood
through MHE. The pseudo-code is outlined in Algorithm 1.
In the initial step when T < H , we estimate the model state

Algorithm 1 Ellipse model estimation based MHE-
MLESAC

1: MHE-MLESAC(Φpc
T−H+1:T ,x−T−H+1:T ,jmax)

Input: Point cloud set Φpc and apriori state x−T−H+1:T ,
and max trial number jmax.
Output: Optimized state x̂best

t=T−H+1:T .
2: j ← 1
3: while j ≤ jmax do
4: Obtain randomly sampled PC set Ψj from

Φpc
T−H+1:T

5: Generate a candidate model x̂jT−H+1:T from Ψj and
x−T−H+1:T by solving the optimization problem for
MHE-MLESAC

6: Evaluate J(x̂jT−H+1:T ; Υj ,Mj)
7: if j == 1 then
8: x̂best

T−H+1:T ← x̂1
T−H+1:T

9: Jbest ← J1

10: else
11: if Jj < Jbest then
12: x̂best

T−H+1:T ← x̂jT−H+1:T

13: Jbest ← Jj

14: end if
15: end if
16: j ← j + 1
17: end while

x through KF. When T ≥ H we estimate x using MHE-
MLESAC. The algorithm consists of 6 main steps to estimate
the state of the pedestrian. The input data would be all the
pedestrian PCs Φpc

T−H+1:T and the apriori state x̂−T−H+1:T

within the horizon, and the maximum trial number jmax for
MHE-MLESAC. The output of this algorithm is the new
state estimation x̂best

T−H+1:T . The steps of the algorithm is
explained below:

Fig. 5. The experiment environment. The LiDAR sensor is equipped on the
stationary wheelchair at the origin. Motion capture cameras are equipped
in the room. A pedestrian moved in the direction of yellow arrow. The 3D
Cartesian coordinate system is shown in red.

1) In Line 4, randomly sample all PC Φpc
T−H+1:T that is

within the horizon to obtain subset Ψj .
2) In Line 5, use the sampled PC Ψj obtained in Line 4

and apriori state x−T−H+1:T as an initial prediction to
determine candidate ellipse models x̂jT−H+1:T through
MHE-Ellipse.

3) In Line 6, evaluate the value J(x̂jT−H+1:T ; Υj ,Mj
k).

4) In Lines 7 to 15, if j = 1, Jbest and x̂best
T−H+1:T

are initialized. Later, if a better candidate model is
found, Jbest and x̂best

T−H+1:T are updated with this new
candidate.

5) Repeat Line 4 to 16 until jmax is exceeded.
6) Finally, the algorithm will output the aposteriori state

x̂best
T−H+1:T .

VI. OFFLINE ESTIMATION USING EXPERIMENTAL DATA

A. Experiment conditions

The proposed method was applied to PC obtained using
LiDAR and was evaluated through offline estimation. The
experimental setup is depicted in Fig. 5. The LiDAR was
mounted on the top of an electric wheelchair, and measure-
ments were taken while a pedestrian walked in a C-shaped
path. The C-shape path was chosen as it covers the LiDAR’s
radiation angle of the pedestrian’s shoulder and front/back
side. In this experiment, PC with Z-coordinates below 0.6 m
were removed as they corresponded to points from the legs.
Additionally, to assess estimation accuracy, retroreflective
markers were attached to the cap on the pedestrian’s head,
and the accurate position and orientation were obtained
through motion capture (MC). The experimental parameters
are written as follows: |Ψ| = 100, H = 10, jmax = 100,
Q =diag(0.1, 0.1, 0.08, 10−4, 10−4), R = 0.0001, αmin =
0.1 m, αmax = 0.2 m, βmin = 0.05 m, βmax = 0.1 m, θth =
π/18 rad and dth = 0.8. To evaluate the performance of the
present method, two methods were employed as comparison
methods:

1) Estimation using KF with observations from bounding
box (KF-BB) calculations [10].

2) Estimation using KF with observations from RANSAC
calculated using circular model (KF-circle) [15].

151



Fig. 6. Estimated trajectory of each estimated method. The yellow area
represents area where the radiation of LiDAR is high because of the wider
pedestrian body width facing the sensor. The red area represents area where
the radiation of LiDAR is narrower because of the pedestrian orientation
(shoulder side). The Pedestrian starts on the top part and ends at the bottom
part as drawn by the arrows.

B. Results and discussion

Figure 6 illustrates the compared estimated positions
throughout the experiment by all methods with MC on the
X-Y plane. In this experiment, the pedestrian walked in a
C-shaped path starting from the top part and ends at the
bottom part. There are three areas boxed in Fig. 6 where
PC are radiated in different sides of the body. Figure 7 is
the estimation within the top orange box area at t = 2.93 s.
The position of MHE-MLESAC and KF-BB is near to the
MC whereas the shape misfit of the KF-circle method to the
torso causes its centre to be far from the MC. The KF-BB
is accurate in this position because the pedestrian arms are
aligned with the torso. Figure 8 represents an estimation of a
point within the red area at t = 6.84 s. Here the ellipse model
was able to rotate according to the PC measurements. The
correct alignment of the model makes the estimation more
accurate than the other methods. Compared to Fig. 7 (c),
KF-BB in Fig. 8 (c) is worse when the arm sways. Based
on Fig. 9 (a) the highest positional error for all methods
is around t = 6.84 s corresponding to the turning around
(2.54,−0.22). MHE-MLESAC is observed to be the least
affected by the turn as the distance error remains almost the
same. KF-BB distance error fluctuates strongly throughout
the experiment especially during the turning in the red box
area because of arm swings. Although the mean distance
error of KF-BB is slightly better than MHE-MLESAC as
shown in Table I, the angle error is worse. KF-circle method
has the lowest accuracy because of the shape mismatch of
the pedestrian’s torso.

TABLE I
RMSE OF EACH ESTIMATED METHOD.

Distance error (mm) Abs. angular error (rad)
MHE-MLESAC 78.0 0.307
Bounding box 75.8 0.426

KF-circle 135.6 N/A

VII. CONCLUSION

In this paper, we proposed a method for estimating the
pedestrian’s center position by approximating the torso shape
from the PC irradiated on the pedestrian and then tracking
it. We utilized an elliptical model in the MLESAC fitting
process, incorporating Moving Horizon Estimation (MHE) to
improve the accuracy by considering the pedestrian’s motion
model. Experimental results demonstrated the effectiveness
of the proposed method compared to other techniques.

Even though this study has the LiDAR sensor planted at
the origin, with proper state transformation considering the
pose of a moving vehicle, LiDAR can also be mounted to
a moving vehicle for pedestrian estimation. At the current
stage of this paper, this is intended to check the potential of
the MHE-MLESAC tracking of the pedestrian and we are not
considering the real-time potential. Future works will be to
implement this algorithm in the real-time obstacle avoidance
experiments.

This work was supported by JSPS KAKENHI Grant
Number JP 22K19801.
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