
  

  

Equipment reliability is a critical aspect of petrochemical 

refineries. Timely anomaly (due to equipment failures, 

sensor faults, wear and tear, unexpected inputs etc.) 

detection is essential to keep equipment running safely, 

improve performance, and have an efficient and effective 

maintenance strategy. Advances in machine learning and 

availability of large amounts of process data makes it 

possible to build data-driven models for monitoring complex 

processes and equipment in real-time. These models can 

guide operators, maintenance and process engineers in 

identifying faults and isolating their root causes. This study's 

primary contribution is the demonstration of a methodology 

utilizing field data of a reciprocating compressor in a 

petrochemical refinery and final implementation in a real-

time environment. 

In the literature, Charoenchitt et al. used an autoencoder 

based method to detect anomalies in reciprocating 

compressors, incorporating their thermodynamic equations. 

Additionally, they used vibration spectrums to train the 

model [1]. In another study, Palacín et al. worked on 

anomaly detection for centrifugal compressors. Their 

approach consists of performing principal component 

analysis (PCA) on process data and utilizing the 

Mahalanobis distance on these to detect anomalies [2]. To 

appear our previous study, it was also tested on recycle 

compressor on real case. Its results are similar, and it will be 

published soon [3]. 

In contrast, we develop a fully data-driven approach. This 

involves learning a model of regular compressor operation 

and comparing its outputs to measurements, flagging large 

differences as anomalies. We employ deep learning models 

with Long Short-Term Memory (LSTM) and Gated 

Recurrent Units (GRUs) layers to forecast future sensor 

outputs given past measurements. We use real historical data 

to train and select the model. After training, large differences 

between forecasts and measurements are treated as 
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anomalies. The idea is that the model trained from regular 

operation will make forecasts close to regular operation and 

if there are any discrepancies between the forecasts and 

measurements, then there may be an anomaly in the system. 

We tested our approach on both historical and real-time 

data. Three years of historical process data was collected 

starting from a periodic maintenance of the reciprocating 

compressor. This sensor data was gathered at 15-minute 

intervals and there were some stoppages, leading to 73968 

data points. We chose the compressor outlet as the Key 

Process Indicator (KPI) for monitoring compressor health 

and detecting anomalies. The compressor outlet temperature 

effectively captures the dynamics of the process and mirrors 

fluctuations in other process variables. 18 process variables 

affecting the outlet temperature are selected with the help of 

process engineers: stage suction temperatures (oC), cylinder 

and crank case vibration values (rpm), gas flow rate (m3/h), 

stage suction pressure (kg/cm2) and stage outlet pressure 

(kg/cm2). We divided the dataset into a training set (anomaly 

free) for learning the model and a testing set for evaluating 

the model. The test set encompasses anomalies, shutdowns, 

interventions, instances when the compressor operates 

independently, and other operational changes. From the 

model's standpoint, these events deviate from the regular 

operation and thus identified as anomalies.  

When training our model, we employed the early stopping 

technique to address the issue of overfitting and ensure 

optimal generalization. To implement early stopping, we 

utilized a validation dataset that was separate from the 

training and test datasets. This validation dataset allowed us 

to assess the model's performance on unseen data during the 

training process. Early stopping played a crucial role in 

preventing overfitting by monitoring the performance 

metric, such as accuracy or error, on the validation dataset. If 

the performance metric failed to show improvement over a 

defined patience period, early stopping was triggered, 

halting the training process. This approach helped us strike 

the right balance between model complexity and 

generalization, as it allowed us to stop the training at the 

point where the model exhibited the best performance on 

unseen data. 

We trained multiple deep learning models using GRU and 

LSTM layers, with hidden unit sizes of 64 and 128. Model 

performance was evaluated using the Root Mean Square 

Error (RMSE) and Mean Absolute Error (MAE) metrics. 

The RMSE and MAE values for the train and test datasets 
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are presented in Table 1. The performance metrics were 

carefully analyzed for the training set to identify the most 

suitable model. In this context, we selected the GRU 128 

model based on its lower RMSE and MAE values. As this 

study focused on anomaly detection, a visual examination of 

the RMSE and MAE values for the test dataset was also 

conducted. Figure 1 depicts the graph of the model that 

yielded the most promising results. 

 

 

 

 

 

 
 

 
 

 

 
 

 

 
 

 

The control chart displayed in Figure 1 showcases the 

difference between the observed compressor outlet 

temperature and the predictions made by the model. By 

collaborating with process engineers and referring to 

relevant literature, upper and lower control limits (horizontal 

lines) were established at ±2.0. The region enclosed by these 

control limits is referred to as the control region, while the 

data points falling outside this region are identified as 

anomalies. While the numbered vertical lines indicate the 

occurrence of errors within the specified dates, the two 

unnumbered vertical lines represent predictive maintenance 

periods. The model has achieved success in providing 

accurate alerts for 4 out of 5 anomalies in the system for two 

years. It has a precision rate of 80% and a recall rate of 

100%. 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

The real-time outcomes of the study can be examined by 

maintenance and process engineers, who serve as the 

primary users. The study's findings hold significance for 

these users, as they rely on them to make informed decisions 

and take preventive measures prior to the occurrence of 

anomalies. The study's results serve as a valuable decision- 

support system for proactive action. 
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TABLE I 

PERFORMANCE METRICS 

Train GRU (64) GRU (128) 

 

LSTM (64) 

 

LSTM (128) 

 

RMSE 0.56 0.37 0.55 0.47 

MAE 0.37 0.23 0.35 0.31 

Test GRU (64) GRU (128) 

 

LSTM (64) 

 

LSTM (128) 

 

RMSE 0.74 0.61 0.96 0.80 

MAE 0.48 0.39 0.60 0.58 

 

 
Fig 1. Residual of compressor outlet temperature GRU128 
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